VL53L1CB expansion board example, showing multi-ranges in an autonomous setup & polling mode. Uses the onboard sensor. Targets MbedOS v6.10.0.

Dependencies:   X_NUCLEO_53L1A2

main.cpp

Committer:
johnAlexander
Date:
2021-05-07
Revision:
2:f0ec92af4b5f
Parent:
1:ff48a20de191
Child:
3:c1e893e6752f

File content as of revision 2:f0ec92af4b5f:

/*
 * This VL53L1X Expansion board test application performs range measurements
 * using the onboard embedded centre sensor and two satelites, in autonomous, interrupt mode.
 * Measured ranges are ouput on the Serial Port, running at 115200 baud.
 *
 * This is designed to work with MBed V2 , MBed V5 and MBed V6.
 *
 *  The Reset button can be used to restart the program.
 *
 * *** Note : 
 * Default Mbed build system settings disable print floating-point support.
 * Offline builds can enable this, again.
 * https://github.com/ARMmbed/mbed-os/blob/master/platform/source/minimal-printf/README.md
 * .\mbed-os\platform\mbed_lib.json
 *
 */
 
#include <stdio.h>
#include <time.h>

#include "mbed.h"

#include "XNucleo53L1A2.h"
#include "ToF_I2C.h"

// i2c comms port pins
#define I2C_SDA   D14 
#define I2C_SCL   D15  


#define NUM_SENSORS 3

// define the interrupt pins
PinName CentreIntPin = A2;
// the satellite pins depend on solder blobs on the back of the shield.
// they may not exist or may be one of two sets.
// the centre pin always exists
PinName LeftIntPin = D9;
PinName RightIntPin = D4;
// alternate set
//PinName LeftIntPin = D8;
//PinName RightIntPin = D2;



static XNucleo53L1A2 *board=NULL;

#if (MBED_VERSION  > 60300) 
    UnbufferedSerial  pc(USBTX, USBRX);
    extern "C" void wait_ms(int ms);
#else
    Serial pc(SERIAL_TX, SERIAL_RX); 
#endif

// flags to indicate an interrupt has happened
static int int_centre_result = 0;
static int int_left_result = 0;
static int int_right_result = 0;

// flags to indicate an interrupt has cleared
static int int_centre_dropped = 0;
static int int_left_dropped = 0;
static int int_right_dropped = 0;

void print_results( int devNumber, VL53L1_MultiRangingData_t *pMultiRangingData );

class WaitForMeasurement {
public:


// this class services the interrupts from the ToF sensors.
// There is a limited amount you can do in an interrupt routine; printfs,mutexes break them among other things.
// We keep things simple by only raising a flag so all the real work is done outside the interrupt.
// This is designed around MBED V2 which doesn't have the RTOS features that would make this work nicely e.g. semaphores/queues.
WaitForMeasurement(): _interrupt(A1)
{
}


    // constructor - Sensor is not used and can be removed
    WaitForMeasurement(PinName pin,VL53L1_DEV Dev) : _interrupt(pin)          // create the InterruptIn on the pin specified to Counter
    {
         Devlocal = Dev;
         pinlocal = pin;
         
//         #include "mbed.h"
 

        _interrupt.rise(callback(this, &WaitForMeasurement::got_interrupt)); // if interrupt happens read data
        _interrupt.fall(callback(this, &WaitForMeasurement::linedropped)); // if interupt clears, clear interrupt
        
    }
    
      // function is called every time an interupt is cleared. Sets flags to clear the interrupt 
    void linedropped()
    {
        
        if (Devlocal->i2c_slave_address == NEW_SENSOR_CENTRE_ADDRESS)
                int_centre_dropped = 1;  //flag to main that interrupt cleared. A flag is raised which allows the main routine to service interupt.
        if (Devlocal->i2c_slave_address == NEW_SENSOR_LEFT_ADDRESS)
                int_left_dropped = 1;   //flag to main that interrupt cleared
        if (Devlocal->i2c_slave_address == NEW_SENSOR_RIGHT_ADDRESS)
                int_right_dropped = 1;  //flag to main that interrupt cleared
        
    }

  // function is called every time an interupt is seen. A flag is raised which allows the main routine to service the interupt.
    void got_interrupt()
    {
        DigitalIn intp(pinlocal);

        if (Devlocal->i2c_slave_address == NEW_SENSOR_CENTRE_ADDRESS)
                int_centre_result = 1;  //flag to main that interrupt happened
        if (Devlocal->i2c_slave_address == NEW_SENSOR_LEFT_ADDRESS)
                int_left_result = 1;   //flag to main that interrupt happened7
        if (Devlocal->i2c_slave_address == NEW_SENSOR_RIGHT_ADDRESS)
                int_right_result = 1;  //flag to main that interrupt happened
    }

    
    //destructor
    ~WaitForMeasurement()
    {
        printf("WaitForMeasurement destruction \n");
    }

private:
    InterruptIn _interrupt;
    PinName pinlocal;
    VL53L1_DEV Devlocal;
    int status;
    
};



VL53L1_Dev_t                   devCentre;
VL53L1_Dev_t                   devLeft;
VL53L1_Dev_t                   devRight;
VL53L1_DEV                     Dev = &devCentre;

 
/*=================================== Main ==================================
=============================================================================*/
int main()
{   
    int status;
    VL53L1 * Sensor;
    uint8_t ToFSensor = 1; // 0=Left, 1=Center(default), 2=Right
  
    //mbed compiler claims these are never used but they are.
    WaitForMeasurement* int2;
    WaitForMeasurement* int1;
    WaitForMeasurement* int3;
    
    
    pc.baud(115200);  // baud rate is important as printf statements take a lot of time
    
    printf("Autonomous Interruptmbed = %d \r\n",MBED_VERSION);

// create i2c interface
    ToF_DevI2C *dev_I2C = new ToF_DevI2C(I2C_SDA, I2C_SCL);
    
    dev_I2C->frequency(400000); //also needs doing in spi_interface.c
    
    /* creates the 53L1A2 expansion board singleton obj */
   board = XNucleo53L1A2::instance(dev_I2C, CentreIntPin, LeftIntPin, RightIntPin);
    
    printf("board created!\r\n");

    /* init the 53L1A1 expansion board with default values */
    status = board->init_board();
    if (status) {
        printf("Failed to init board!\r\n");
        return 0;
    }
       
        
    printf("board initiated! - %d\r\n", status);
  // create sensor controller classes for each vl53l1 and configure each vl53l1                                            
        for (ToFSensor=0;ToFSensor < NUM_SENSORS;ToFSensor++){
            switch(ToFSensor){
                case 0:
                    if (board->sensor_centre== NULL ) continue;  // don't create if sensor not detected
                    Dev=&devCentre;
                    Sensor=board->sensor_centre;
                    Dev->i2c_slave_address = NEW_SENSOR_CENTRE_ADDRESS;
                    printf("configuring centre channel \n");
                    break;
                case 1:
                    if (board->sensor_left== NULL ) continue;
                    Dev=&devLeft; 
                    Sensor=board->sensor_left;
                    Dev->i2c_slave_address = NEW_SENSOR_LEFT_ADDRESS;
                    printf("configuring left channel \n");
                    break;
                case 2:
                    if (board->sensor_right== NULL ) continue;
                    Dev=&devRight;  
                    Sensor=board->sensor_right;
                    Dev->i2c_slave_address = NEW_SENSOR_RIGHT_ADDRESS;
                    printf("configuring right channel \n");
                    break;      
                default:
                   printf(" error in switch, invalid ToF sensor \n");
            }
        
            // configure the sensors
            Dev->comms_speed_khz = 400;
    
            Dev->comms_type = 1;
    
           /* Device Initialization and setting */  
            status = Sensor->vl53L1_DataInit();
            status = Sensor->vl53L1_StaticInit();
            status = Sensor->vl53L1_SetPresetMode(VL53L1_PRESETMODE_AUTONOMOUS);
            status = Sensor->vl53L1_SetDistanceMode(VL53L1_DISTANCEMODE_LONG);
            status = Sensor->vl53L1_SetMeasurementTimingBudgetMicroSeconds( 200 * 1000); 
            
   
           // set the ranging and signal rate filter
            VL53L1_DetectionConfig_t thresholdconfig;
            thresholdconfig.DetectionMode = VL53L1_DETECTION_DISTANCE_ONLY; /// type VL53L1_DetectionMode in vl53l1_def.h
            thresholdconfig.Distance.CrossMode = VL53L1_THRESHOLD_IN_WINDOW; // type VL53L1_ThresholdMode. ignore if distance outside high and low 
            thresholdconfig.Distance.High = 300;  // high distance in mm
            thresholdconfig.Distance.Low = 200;   // low distance in mm
            thresholdconfig.Rate.CrossMode=0;  // type VL53L1_ThresholdMode VL53L1_THRESHOLD_CROSSED_LOW VL53L1_THRESHOLD_CROSSED_HIGH VL53L1_THRESHOLD_OUT_OF_WINDOW VL53L1_THRESHOLD_IN_WINDOW 
            thresholdconfig.Rate.High = 0;
            thresholdconfig.Rate.Low = 0;
            thresholdconfig.IntrNoTarget = 0 ;// if 1 produce an interrupt even if there is no target found e.g out of range 
            status = Sensor->vl53L1_SetThresholdConfig(&thresholdconfig);
        }
        
        // create interrupt handlers for the three sensors and start measurements
        if (board->sensor_centre!= NULL )
        {
            printf("starting interrupt centre\n");
            devCentre.i2c_slave_address = NEW_SENSOR_CENTRE_ADDRESS;
            int1 =  new WaitForMeasurement(CentreIntPin,&devCentre);    // create interrupt handler
            status = board->sensor_centre->vl53L1_StartMeasurement();
        }
        
        if (board->sensor_left!= NULL )
        {
            printf("starting interrupt left\n");
            devLeft.i2c_slave_address = NEW_SENSOR_LEFT_ADDRESS;
            int2 = new WaitForMeasurement(LeftIntPin,&devLeft);    // create interrupt handler
            status = board->sensor_left->vl53L1_StartMeasurement();
            printf("started interrupt left\n");
        }

        if (board->sensor_right!= NULL )
        {
            printf("starting interrupt right\n");
            devRight.i2c_slave_address = NEW_SENSOR_RIGHT_ADDRESS;
            int3 = new WaitForMeasurement(RightIntPin,&devRight);    // create interrupt handler
            status = board->sensor_right->vl53L1_StartMeasurement();
        }
        
        
        printf("loop forever\n"); 

       // loop waiting for interrupts to happen. This is signaled by int_centre_result,int_left_result or int_right_result
       // being non zero. When the interrupts clear this is signaled by int_centre_dropped,int_left_dropped and int_right_dropped. 
       // These are set back to zero when processing is completed
        while (1)
        {
            VL53L1_MultiRangingData_t MultiRangingData;
            VL53L1_MultiRangingData_t *pMultiRangingData = &MultiRangingData;   

            if ( int_left_dropped  || int_centre_dropped  || int_right_dropped )
                wait_ms(30);  
            
            // when the interrupt pin goes loww start new measurement
            if ( int_centre_dropped != 0)
            {
               int_centre_dropped = 0;
               status = board->sensor_centre->vl53L1_ClearInterruptAndStartMeasurement();
            }
            
            if ( int_left_dropped != 0)               
            {
               int_left_dropped = 0;
               status = board->sensor_left->vl53L1_ClearInterruptAndStartMeasurement();
            }
            
            if ( int_right_dropped != 0)            
            {
               int_right_dropped = 0;
               status = board->sensor_right->vl53L1_ClearInterruptAndStartMeasurement();
            }

            if (int_right_result != 0) // interrupt seen on right sensor
            {
                status = board->sensor_right->vl53L1_GetMultiRangingData( pMultiRangingData);
                if ( status == 0)
                {
                    print_results( devRight.i2c_slave_address, pMultiRangingData );
                }

                // clear interrupt flag
                int_right_result = 0;
            }

            if (int_left_result != 0)  // interrupt seen on left sensor
            {
                status = board->sensor_left->vl53L1_GetMultiRangingData( pMultiRangingData);
                if ( status == 0)
                {
                    print_results( devLeft.i2c_slave_address, pMultiRangingData );
                }

                // clear interrupt flag
                int_left_result = 0;
            }
              
            if (int_centre_result != 0)
            {
                status = board->sensor_centre->vl53L1_GetMultiRangingData( pMultiRangingData);
                if ( status == 0)
                {
                    print_results( devCentre.i2c_slave_address, pMultiRangingData );
                }
                
                 // clear interrupt flag
                int_centre_result = 0;

            }
            wait_ms( 1 * 10);
                                  
        }
    }
    
    
 // print what ever results are required   
void print_results( int devNumber, VL53L1_MultiRangingData_t *pMultiRangingData )
{
    int no_of_object_found=pMultiRangingData->NumberOfObjectsFound;
            
    int RoiNumber=pMultiRangingData->RoiNumber;

    if (( no_of_object_found < 10 ) &&  ( no_of_object_found != 0)) 
    {
        for(int j=0;j<no_of_object_found;j++){
            if ((pMultiRangingData->RangeData[j].RangeStatus == VL53L1_RANGESTATUS_RANGE_VALID) || 
                (pMultiRangingData->RangeData[j].RangeStatus == VL53L1_RANGESTATUS_RANGE_VALID_NO_WRAP_CHECK_FAIL))
            {
                printf("\t i2cAddr=%d \t RoiNumber=%d   \t status=%d, \t D=%5dmm, \t Signal=%2.2f Mcps, \t Ambient=%2.2f Mcps \n",
                    devNumber, RoiNumber,
                    pMultiRangingData->RangeData[j].RangeStatus,
                    pMultiRangingData->RangeData[j].RangeMilliMeter,
                    pMultiRangingData->RangeData[j].SignalRateRtnMegaCps / 65535.0,
                    pMultiRangingData->RangeData[j].AmbientRateRtnMegaCps / 65535.0);   
            }
        }
    } // if (( no_of_object_found < 10 ) &&  ( no_of_object_found != 0)) 
}    

        
#if (MBED_VERSION  > 60300)
extern "C" void wait_ms(int ms)
 {
    thread_sleep_for(ms);
 }
 #endif