Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
Diff: main.cpp
- Revision:
- 0:25f4809c2729
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Sun Jun 09 14:54:11 2019 +0000 @@ -0,0 +1,213 @@ +#include "mbed.h" +#include "BufferedSerial.h" +#include "rplidar.h" +#include "Robot.h" +#include "Communication.h" +#include "math.h" +#include "ActiveCell.h" +#include "HistogramCell.h" +#define M_PI 3.14159265358979323846f +// LABWORK 4 v0.1 +// LUIS CRUZ 2011164454 +// JACEK SOBECKI +RPLidar lidar; +BufferedSerial se_lidar(PA_9, PA_10); +PwmOut rplidar_motor(D3); +struct RPLidarMeasurement data; +Serial pc(SERIAL_TX, SERIAL_RX, 115200); +DigitalIn button(PC_13); +void poseEst(float p[], float radius, float enc_res, float b); +void SpeedLim(float w[]); +void initializeArrays(); +int Bresenham(int x1, int y1, int x2, int y2, int cX[], int cY[]); +void observe(); + +const int hSize = 80, aSize = 11;// +ActiveCell activeReg[aSize][aSize]; +HistogramCell histogram[hSize][hSize]; + +int main(){ + + button.mode(PullUp); + getCountsAndReset(); + setSpeeds(0, 0); + initializeArrays(); + while(button==1); + rplidar_motor.period(0.001f); + lidar.begin(se_lidar); + lidar.setAngle(0,360); + rplidar_motor.write(0.9f); + pc.printf("Program started.\n"); + lidar.startThreadScan(); + //w[0] = Omega | w[1] = Left | w[2] = Right + //p[0] = X | p[1] = Y | p[2] = Theta + //b = Distance between wheels, enc_res = Encoder Resolution, v = Calculated speed + //k_v = Speed gain, k_s = Curvature gain, wratio = Angular speed ratio control command + //Cells dim: 5x5cm | + float w[3], v, p[3], p_obj[3], theta, theta_error; + const float radius = 3.5, b = 13.3, enc_res = 1440, k_v = 8/*7*/, + k_s = 12/*10*/, sample_time = 0.05; +// =============================================================================== +// =================================== COORDS ==================================== +// =============================================================================== + //Target coordinates + p_obj[0] = 100, p_obj[1] = 20, p_obj[2] = 0; + //Initial coordinates: + p[0] = 20, p[1] = 20, p[2] = 0; +// =============================================================================== +// =================================== EXECUTION ================================= +// =============================================================================== + while(1){ + getCountsAndReset(); + pc.printf("Speeds: Left=%lf Right=%lf\n", w[1], w[2]); + pc.printf("OBJECTIVE X: %lf OBJECTIVE Y: %lf\n", p_obj[0], p_obj[1]); + pc.printf("Position: X=%lf Y=%lf Theta=%lf\n\n", p[0], p[1], p[2]); + if(lidar.pollSensorData(&data) == 0) pc.printf("dist:%f angle:%f\n", data.distance, data.angle); // Prints one lidar measurement. + //Path calculation + poseEst(p, radius, enc_res, b); + theta = atan2(p_obj[1]-p[1],p_obj[0]-p[0]); + theta = atan2(sin(theta),cos(theta)); + p[2] = atan2(sin(p[2]),cos(p[2])); + theta_error = theta-p[2]; + w[0] = k_s*(theta_error); + //pc.printf("\nOmega:%lf a:%lf\n", w[0], theta); //DEBUG + v = k_v*sqrt(pow((p_obj[0]-p[0]),2)+pow((p_obj[1]-p[1]),2)); + w[1] = (v-(b/2)*w[0])/radius; + w[2] = (v+(b/2)*w[0])/radius; + SpeedLim(w); + if((fabs(p[0]-p_obj[0])+fabs(p[1]-p_obj[1])) < 5){ + setSpeeds(0,0); + } + else{ + setSpeeds(w[1], w[2]); + } + wait(sample_time); + } +} +// =============================================================================== +// =================================== FUNCTIONS ================================= +// =============================================================================== +//Pose Estimation function +void poseEst(float p[], float radius, float enc_res, float b){ + float deltaDl, deltaDr, deltaD, deltaT; + deltaDl = ((float)countsLeft)*(2.0f*M_PI*radius/enc_res); + deltaDr = ((float)countsRight)*(2.0f*M_PI*radius/enc_res); + deltaD = (deltaDr + deltaDl)/2.0f; + deltaT = (deltaDr - deltaDl)/b; + if(fabs(deltaT) == 0){ + p[0] = p[0] + deltaD*cos(p[2]) + deltaT/2; + p[1] = p[1] + deltaD*sin(p[2]) + deltaT/2; + return; + } + p[0] += deltaD*cos(p[2]+deltaT/2.0f); + p[1] += deltaD*sin(p[2]+deltaT/2.0f); + p[2] += deltaT; +} +//Speed limiter function +void SpeedLim(float w[]){ + float wratio; + wratio = fabs(w[2]/w[1]); + if(w[2] > 150 || w[1] > 150){ + if(wratio < 1){ + w[1] = 150; + w[2] = w[1]*wratio; + } + else if(wratio > 1){ + w[2] = 150; + w[1] = w[2]/wratio; + } + else{ + w[2] = 150; + w[1] = 150; + } + } + if(w[2] < 50 || w[1] < 50){ + if(wratio < 1){ + w[1] = 50; + w[2] = w[1]*wratio; + } + else if(wratio > 1){ + w[2] = 50; + w[1] = w[2]/wratio; + } + else{ + w[2] = 50; + w[1] = 50; + } + } +} +//Initialize apriori knowledge of map +void initializeArrays(){ + for (int i = 0; i < aSize; i++) { + for (int j = 0; j < aSize; j++) { + activeReg[i][j].calDist(i, j); + } + } +} +//Bresenham algo -> trace the Lidar's reading line into a bitmap a.k.a. cell's index +int Bresenham(int x1, int y1, int x2, int y2, int cX[], int cY[]){ + int aux = 0; + int delta_x(x2 - x1); + // if xR == x2, then it does not matter what we set here + signed char const ix((delta_x > 0) - (delta_x < 0)); + delta_x = std::abs(delta_x) << 1; + int delta_y(y2 - y1); + // if yR == y2, then it does not matter what we set here + signed char const iy((delta_y > 0) - (delta_y < 0)); + delta_y = std::abs(delta_y) << 1; + cX[aux] = x1, cY[aux] = y1, aux++; + //pc.printf("x = %d | y = %d | xF = %d | yF = %d | aux = %d \n", x1, y1, x2, y2, aux-1); + if (delta_x >= delta_y){ + // error may go below zero + int error(delta_y - (delta_x >> 1)); + while (x1 != x2) + { + // reduce error, while taking into account the corner case of error == 0 + if ((error > 0) || (!error && (ix > 0))){ + error -= delta_x; + y1 += iy; + } + error += delta_y; + x1 += ix; + cX[aux] = x1, cY[aux] = y1, aux++; + } + } + else{ + // error may go below zero + int error(delta_x - (delta_y >> 1)); + while (y1 != y2){ + // reduce error, while taking into account the corner case of error == 0 + if ((error > 0) || (!error && (iy > 0))){ + error -= delta_y; + x1 += ix; + } + error += delta_x; + y1 += iy; + cX[aux] = x1, cY[aux] = y1, aux++; + //pc.printf("x = %d | y = %d | cx = %d | cy = %d | aux = %d \n", x1, y1, cX[aux-1], cY[aux-1], aux-1); //DEBUG + } + } + return aux; +} +void observe(){ + float thetaR_deg, readAngle, lDist, lAng; + int xR, yR, xL, yL, xF, yF; + //------------Processing LIDAR readings------------ + lDist = data.distance / 10; //mm -> cm + if(lDist == 0 || lDist > 2000) return; + lAng = data.angle; + thetaR_deg = (p[2] * 180.0f) / M_PI; + if(thetaR_deg < 0) thetaR_deg = 360 + thetaR_deg; + readAngle = 270 - lAng + thetaR_deg; //Align LIDAR's frame with robot's one + if(readAngle > 360) readAngle -= 360; // " " " " " + else if(readAngle < 0) readAngle += 360;// " " " " " + //pc.printf("ReadAngle: %f | data_deg: %f | Distance: %f | pos: (%f,%f)\n", readAngle, lAng, lDist, p[0], p[1]); //DEBUG + readAngle = (readAngle * M_PI) /180.0f; // deg -> rads + xL = lDist * cos(readAngle)/5;//X_coord Lidar's reading (cell unit) + yL = lDist * sin(readAngle)/5;//Y_coord Lidar's reading (cell unit) + xR = p[0]/5, yR = p[1]/5; //Robot's coordinates cell + xF = xR + xL; + yF = yR + yL; + //if(xF < 0 || yF < 0 || xF > 80 || yF > 80) return; + npts = Bresenham(xR, yR, xF, yF, cX, cY); +} \ No newline at end of file