Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: BufferedSerial
Functions.cpp
- Committer:
- ppovoa
- Date:
- 2021-05-06
- Revision:
- 4:256f2cbe3fdd
- Child:
- 5:bc42c03f2a23
File content as of revision 4:256f2cbe3fdd:
#include <math.h>
#include <cmath>
void velRobot2velWheels(float vRobot,float wRobot,float wheelsRadius,float wheelsDistance,float w[2])
{
w[0]=(vRobot-(wheelsDistance/2)*wRobot)/wheelsRadius;
w[1]=(vRobot+(wheelsDistance/2)*wRobot)/wheelsRadius;
}
void nextPose(float countsLeft, float countsRight, float wheelsRadius, float wheelsDistance, float pose[3])
{
// Deslocamentos
float d_l, d_r, desl, delta_ang, delta_x, delta_y;
d_l = 2*3.1415926535 * wheelsRadius * ( countsLeft/1440.0f );
d_r = 2*3.1415926535 * wheelsRadius * ( countsRight/1440.0f );
desl = (d_l+d_r)/2.0f;
delta_ang = (d_r-d_l)/wheelsDistance;
delta_x = desl * cos(pose[2]+delta_ang/2.0f);
delta_y = desl * sin(pose[2]+delta_ang/2.0f);
pose[0] = pose[0] + delta_x;
pose[1] = pose[1] + delta_y;
pose[2] = pose[2] + delta_ang;
}
int** bresenham(float poseX, float poseY, float x1, float y1, int *dim){
float T, E, A, B;
float x = poseX;
float y = poseY;
float dx = abs(x1 - poseX);
float dy = abs(y1 - poseY);
float s1 = (x1 - poseX)/dx; // substitui o sign() do matlab
float s2 = (y1 - poseY)/dy;
int interchange = 0;
if (dy > dx){
T = dx;
dx = dy;
dy = T;
interchange = 1;
}
E = 2.0f*dy - dx;
A = 2.0f*dy;
B = 2.0f*dy - 2.0f*dx;
// =========================================
// Inicializar tabela bidimensional a zero
// =========================================
int width = 2;
int height = (int)(double)(dx+0.5);
*dim = height;
int** pointsVec = 0;
pointsVec = new int*[height];
for (int h = 0; h < height; h++){
pointsVec[h] = new int[width];
for (int w = 0; w < width; w++){
pointsVec[h][w] = 0;
}
}
// =========================================
for (int i = 0; i<dx; i++){
if (E < 0){
if (interchange == 1){
y = y + s2;
}
else{
x = x + s1;
}
E = E + A;
}
else{
y = y + s2;
x = x + s1;
E = E + B;
}
pointsVec[i][0] = static_cast<int>(x); // converte de float para int (confirmar)
pointsVec[i][1] = static_cast<int>(y);
}
return pointsVec;
}
float Algorith_Inverse(float xi, float yi, float xt, float yt, float z){
float z_max = 200; // 2 m
float alfa = 5; // 5 cm
//float beta = 1; // 1 grau
float L0 = 0.0;
float Locc = 0.65;
float Lfree = -0.65;
float L;
float r = sqrt( pow((xi-xt),2) + pow((yi-yt),2) );
//phi = atan2( yi-yt, xi-xt ) - theta;
//if (r > min(z_max, z+alfa/2)) || (abs(phi-theta) > beta/2)
//L = L0;
if ((z < z_max) && (abs(r-z_max) < alfa/2.0))
L = Locc;
else if (r <= z)
L = Lfree;
else
L = L0;
return L;
}
void Mapping(float MapaLog[40][40], float xi, float yi, int **pointsVec, float z, int dim){
int x, y;
float L;
for(int i=0; i<dim; i++){
x = pointsVec[i][0];
y = pointsVec[i][1];
L = Algorith_Inverse(xi, yi, x, y, z);
MapaLog[x][y] = MapaLog[x][y] + L;
}
}