un triangle sympathique

Dependencies:   mbed

main.cpp

Committer:
GabGabyz
Date:
2017-01-06
Revision:
0:ab28bf24e6e2

File content as of revision 0:ab28bf24e6e2:


#include "mbed.h"

AnalogOut my_output(PA_4);

#define PI        (3.141592653589793238462)
#define AMPLITUDE (1.0)    // x * 3.3V
#define PHASE     (PI * 1) // 2*pi is one period
#define RANGE     (0x7FFF)
#define OFFSET    (0x7FFF)

// Configuration for sinewave output
#define BUFFER_SIZE (360)
//uint16_t buffer[BUFFER_SIZE];

int i;
/*
int main() {
    while(1) {      
        // triangle output
        for (i = 0; i < 1000; i++) {
            i=0*i;
            my_output.write_u16(i);
            wait_us(100);
            i=2*i;
            my_output.write_u16(2*i);
            wait_us(100);
        }*/
        
        /*
        for (i = 65535; i>0; i--) {
            my_output.write_u16(i);
            //wait_us(10);
    }*/



int main() {
    while(1) {      
        // triangle output
        for (i = 0; i < 65536; i++) {
            my_output.write_u16(i);
           // wait_us(10);
        }
        
        for (i = 65535; i>0; i--) {
            my_output.write_u16(i);
            //wait_us(10);
    }
}
}





/*
//void calculate_sinewave(void);
int main() {
    printf("Sinewave example\n");
    calculate_sinewave();
    while(1) {      
        // sinewave output
        for (int i = 0; i < BUFFER_SIZE; i++) {
            my_output.write_u16(buffer[i]);
            wait_us(10);
        }
    }
}

// Create the sinewave buffer
void calculate_sinewave(void){
  for (int i = 0; i < BUFFER_SIZE; i++) {
     double rads = (PI * i)/180.0; // Convert degree in radian
     buffer[i] = (uint16_t)(AMPLITUDE * (RANGE * (cos(rads + PHASE))) + OFFSET);
  }
}
*/