use this

Dependencies:   mbed

Fork of greenimugetithothot by SGMP Coperations

Committer:
iampalop
Date:
Wed Dec 13 03:35:22 2017 +0000
Revision:
2:e8807de906c9
Parent:
0:92bbf3093a25
PopDetect

Who changed what in which revision?

UserRevisionLine numberNew contents of line
csggreen 0:92bbf3093a25 1 #ifndef MPU9250_H
csggreen 0:92bbf3093a25 2 #define MPU9250_H
csggreen 0:92bbf3093a25 3
csggreen 0:92bbf3093a25 4 #include "mbed.h"
csggreen 0:92bbf3093a25 5 #include "math.h"
csggreen 0:92bbf3093a25 6
csggreen 0:92bbf3093a25 7 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
csggreen 0:92bbf3093a25 8 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
csggreen 0:92bbf3093a25 9 //
csggreen 0:92bbf3093a25 10 //Magnetometer Registers
csggreen 0:92bbf3093a25 11 #define AK8963_ADDRESS 0x0C<<1
csggreen 0:92bbf3093a25 12 #define WHO_AM_I_AK8963 0x00 // should return 0x48
csggreen 0:92bbf3093a25 13 #define INFO 0x01
csggreen 0:92bbf3093a25 14 #define AK8963_ST1 0x02 // data ready status bit 0
csggreen 0:92bbf3093a25 15 #define AK8963_XOUT_L 0x03 // data
csggreen 0:92bbf3093a25 16 #define AK8963_XOUT_H 0x04
csggreen 0:92bbf3093a25 17 #define AK8963_YOUT_L 0x05
csggreen 0:92bbf3093a25 18 #define AK8963_YOUT_H 0x06
csggreen 0:92bbf3093a25 19 #define AK8963_ZOUT_L 0x07
csggreen 0:92bbf3093a25 20 #define AK8963_ZOUT_H 0x08
csggreen 0:92bbf3093a25 21 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
csggreen 0:92bbf3093a25 22 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
csggreen 0:92bbf3093a25 23 #define AK8963_ASTC 0x0C // Self test control
csggreen 0:92bbf3093a25 24 #define AK8963_I2CDIS 0x0F // I2C disable
csggreen 0:92bbf3093a25 25 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
csggreen 0:92bbf3093a25 26 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
csggreen 0:92bbf3093a25 27 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
csggreen 0:92bbf3093a25 28
csggreen 0:92bbf3093a25 29 #define SELF_TEST_X_GYRO 0x00
csggreen 0:92bbf3093a25 30 #define SELF_TEST_Y_GYRO 0x01
csggreen 0:92bbf3093a25 31 #define SELF_TEST_Z_GYRO 0x02
csggreen 0:92bbf3093a25 32
csggreen 0:92bbf3093a25 33 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
csggreen 0:92bbf3093a25 34 #define Y_FINE_GAIN 0x04
csggreen 0:92bbf3093a25 35 #define Z_FINE_GAIN 0x05
csggreen 0:92bbf3093a25 36 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
csggreen 0:92bbf3093a25 37 #define XA_OFFSET_L_TC 0x07
csggreen 0:92bbf3093a25 38 #define YA_OFFSET_H 0x08
csggreen 0:92bbf3093a25 39 #define YA_OFFSET_L_TC 0x09
csggreen 0:92bbf3093a25 40 #define ZA_OFFSET_H 0x0A
csggreen 0:92bbf3093a25 41 #define ZA_OFFSET_L_TC 0x0B */
csggreen 0:92bbf3093a25 42
csggreen 0:92bbf3093a25 43 #define SELF_TEST_X_ACCEL 0x0D
csggreen 0:92bbf3093a25 44 #define SELF_TEST_Y_ACCEL 0x0E
csggreen 0:92bbf3093a25 45 #define SELF_TEST_Z_ACCEL 0x0F
csggreen 0:92bbf3093a25 46
csggreen 0:92bbf3093a25 47 #define SELF_TEST_A 0x10
csggreen 0:92bbf3093a25 48
csggreen 0:92bbf3093a25 49 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
csggreen 0:92bbf3093a25 50 #define XG_OFFSET_L 0x14
csggreen 0:92bbf3093a25 51 #define YG_OFFSET_H 0x15
csggreen 0:92bbf3093a25 52 #define YG_OFFSET_L 0x16
csggreen 0:92bbf3093a25 53 #define ZG_OFFSET_H 0x17
csggreen 0:92bbf3093a25 54 #define ZG_OFFSET_L 0x18
csggreen 0:92bbf3093a25 55 #define SMPLRT_DIV 0x19
csggreen 0:92bbf3093a25 56 #define CONFIG 0x1A
csggreen 0:92bbf3093a25 57 #define GYRO_CONFIG 0x1B
csggreen 0:92bbf3093a25 58 #define ACCEL_CONFIG 0x1C
csggreen 0:92bbf3093a25 59 #define ACCEL_CONFIG2 0x1D
csggreen 0:92bbf3093a25 60 #define LP_ACCEL_ODR 0x1E
csggreen 0:92bbf3093a25 61 #define WOM_THR 0x1F
csggreen 0:92bbf3093a25 62
csggreen 0:92bbf3093a25 63 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
csggreen 0:92bbf3093a25 64 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
csggreen 0:92bbf3093a25 65 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
csggreen 0:92bbf3093a25 66
csggreen 0:92bbf3093a25 67 #define FIFO_EN 0x23
csggreen 0:92bbf3093a25 68 #define I2C_MST_CTRL 0x24
csggreen 0:92bbf3093a25 69 #define I2C_SLV0_ADDR 0x25
csggreen 0:92bbf3093a25 70 #define I2C_SLV0_REG 0x26
csggreen 0:92bbf3093a25 71 #define I2C_SLV0_CTRL 0x27
csggreen 0:92bbf3093a25 72 #define I2C_SLV1_ADDR 0x28
csggreen 0:92bbf3093a25 73 #define I2C_SLV1_REG 0x29
csggreen 0:92bbf3093a25 74 #define I2C_SLV1_CTRL 0x2A
csggreen 0:92bbf3093a25 75 #define I2C_SLV2_ADDR 0x2B
csggreen 0:92bbf3093a25 76 #define I2C_SLV2_REG 0x2C
csggreen 0:92bbf3093a25 77 #define I2C_SLV2_CTRL 0x2D
csggreen 0:92bbf3093a25 78 #define I2C_SLV3_ADDR 0x2E
csggreen 0:92bbf3093a25 79 #define I2C_SLV3_REG 0x2F
csggreen 0:92bbf3093a25 80 #define I2C_SLV3_CTRL 0x30
csggreen 0:92bbf3093a25 81 #define I2C_SLV4_ADDR 0x31
csggreen 0:92bbf3093a25 82 #define I2C_SLV4_REG 0x32
csggreen 0:92bbf3093a25 83 #define I2C_SLV4_DO 0x33
csggreen 0:92bbf3093a25 84 #define I2C_SLV4_CTRL 0x34
csggreen 0:92bbf3093a25 85 #define I2C_SLV4_DI 0x35
csggreen 0:92bbf3093a25 86 #define I2C_MST_STATUS 0x36
csggreen 0:92bbf3093a25 87 #define INT_PIN_CFG 0x37
csggreen 0:92bbf3093a25 88 #define INT_ENABLE 0x38
csggreen 0:92bbf3093a25 89 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
csggreen 0:92bbf3093a25 90 #define INT_STATUS 0x3A
csggreen 0:92bbf3093a25 91 #define ACCEL_XOUT_H 0x3B
csggreen 0:92bbf3093a25 92 #define ACCEL_XOUT_L 0x3C
csggreen 0:92bbf3093a25 93 #define ACCEL_YOUT_H 0x3D
csggreen 0:92bbf3093a25 94 #define ACCEL_YOUT_L 0x3E
csggreen 0:92bbf3093a25 95 #define ACCEL_ZOUT_H 0x3F
csggreen 0:92bbf3093a25 96 #define ACCEL_ZOUT_L 0x40
csggreen 0:92bbf3093a25 97 #define TEMP_OUT_H 0x41
csggreen 0:92bbf3093a25 98 #define TEMP_OUT_L 0x42
csggreen 0:92bbf3093a25 99 #define GYRO_XOUT_H 0x43
csggreen 0:92bbf3093a25 100 #define GYRO_XOUT_L 0x44
csggreen 0:92bbf3093a25 101 #define GYRO_YOUT_H 0x45
csggreen 0:92bbf3093a25 102 #define GYRO_YOUT_L 0x46
csggreen 0:92bbf3093a25 103 #define GYRO_ZOUT_H 0x47
csggreen 0:92bbf3093a25 104 #define GYRO_ZOUT_L 0x48
csggreen 0:92bbf3093a25 105 #define EXT_SENS_DATA_00 0x49
csggreen 0:92bbf3093a25 106 #define EXT_SENS_DATA_01 0x4A
csggreen 0:92bbf3093a25 107 #define EXT_SENS_DATA_02 0x4B
csggreen 0:92bbf3093a25 108 #define EXT_SENS_DATA_03 0x4C
csggreen 0:92bbf3093a25 109 #define EXT_SENS_DATA_04 0x4D
csggreen 0:92bbf3093a25 110 #define EXT_SENS_DATA_05 0x4E
csggreen 0:92bbf3093a25 111 #define EXT_SENS_DATA_06 0x4F
csggreen 0:92bbf3093a25 112 #define EXT_SENS_DATA_07 0x50
csggreen 0:92bbf3093a25 113 #define EXT_SENS_DATA_08 0x51
csggreen 0:92bbf3093a25 114 #define EXT_SENS_DATA_09 0x52
csggreen 0:92bbf3093a25 115 #define EXT_SENS_DATA_10 0x53
csggreen 0:92bbf3093a25 116 #define EXT_SENS_DATA_11 0x54
csggreen 0:92bbf3093a25 117 #define EXT_SENS_DATA_12 0x55
csggreen 0:92bbf3093a25 118 #define EXT_SENS_DATA_13 0x56
csggreen 0:92bbf3093a25 119 #define EXT_SENS_DATA_14 0x57
csggreen 0:92bbf3093a25 120 #define EXT_SENS_DATA_15 0x58
csggreen 0:92bbf3093a25 121 #define EXT_SENS_DATA_16 0x59
csggreen 0:92bbf3093a25 122 #define EXT_SENS_DATA_17 0x5A
csggreen 0:92bbf3093a25 123 #define EXT_SENS_DATA_18 0x5B
csggreen 0:92bbf3093a25 124 #define EXT_SENS_DATA_19 0x5C
csggreen 0:92bbf3093a25 125 #define EXT_SENS_DATA_20 0x5D
csggreen 0:92bbf3093a25 126 #define EXT_SENS_DATA_21 0x5E
csggreen 0:92bbf3093a25 127 #define EXT_SENS_DATA_22 0x5F
csggreen 0:92bbf3093a25 128 #define EXT_SENS_DATA_23 0x60
csggreen 0:92bbf3093a25 129 #define MOT_DETECT_STATUS 0x61
csggreen 0:92bbf3093a25 130 #define I2C_SLV0_DO 0x63
csggreen 0:92bbf3093a25 131 #define I2C_SLV1_DO 0x64
csggreen 0:92bbf3093a25 132 #define I2C_SLV2_DO 0x65
csggreen 0:92bbf3093a25 133 #define I2C_SLV3_DO 0x66
csggreen 0:92bbf3093a25 134 #define I2C_MST_DELAY_CTRL 0x67
csggreen 0:92bbf3093a25 135 #define SIGNAL_PATH_RESET 0x68
csggreen 0:92bbf3093a25 136 #define MOT_DETECT_CTRL 0x69
csggreen 0:92bbf3093a25 137 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
csggreen 0:92bbf3093a25 138 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
csggreen 0:92bbf3093a25 139 #define PWR_MGMT_2 0x6C
csggreen 0:92bbf3093a25 140 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
csggreen 0:92bbf3093a25 141 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
csggreen 0:92bbf3093a25 142 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
csggreen 0:92bbf3093a25 143 #define DMP_REG_1 0x70
csggreen 0:92bbf3093a25 144 #define DMP_REG_2 0x71
csggreen 0:92bbf3093a25 145 #define FIFO_COUNTH 0x72
csggreen 0:92bbf3093a25 146 #define FIFO_COUNTL 0x73
csggreen 0:92bbf3093a25 147 #define FIFO_R_W 0x74
csggreen 0:92bbf3093a25 148 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
csggreen 0:92bbf3093a25 149 #define XA_OFFSET_H 0x77
csggreen 0:92bbf3093a25 150 #define XA_OFFSET_L 0x78
csggreen 0:92bbf3093a25 151 #define YA_OFFSET_H 0x7A
csggreen 0:92bbf3093a25 152 #define YA_OFFSET_L 0x7B
csggreen 0:92bbf3093a25 153 #define ZA_OFFSET_H 0x7D
csggreen 0:92bbf3093a25 154 #define ZA_OFFSET_L 0x7E
csggreen 0:92bbf3093a25 155
csggreen 0:92bbf3093a25 156 // Using the MSENSR-9250 breakout board, ADO is set to 0
csggreen 0:92bbf3093a25 157 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
csggreen 0:92bbf3093a25 158 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
csggreen 0:92bbf3093a25 159 #define ADO 0
csggreen 0:92bbf3093a25 160 #if ADO
csggreen 0:92bbf3093a25 161 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
csggreen 0:92bbf3093a25 162 #else
csggreen 0:92bbf3093a25 163 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
csggreen 0:92bbf3093a25 164 #endif
csggreen 0:92bbf3093a25 165
csggreen 0:92bbf3093a25 166 // Set initial input parameters
csggreen 0:92bbf3093a25 167 enum Ascale {
csggreen 0:92bbf3093a25 168 AFS_2G = 0,
csggreen 0:92bbf3093a25 169 AFS_4G,
csggreen 0:92bbf3093a25 170 AFS_8G,
csggreen 0:92bbf3093a25 171 AFS_16G
csggreen 0:92bbf3093a25 172 };
csggreen 0:92bbf3093a25 173
csggreen 0:92bbf3093a25 174 enum Gscale {
csggreen 0:92bbf3093a25 175 GFS_250DPS = 0,
csggreen 0:92bbf3093a25 176 GFS_500DPS,
csggreen 0:92bbf3093a25 177 GFS_1000DPS,
csggreen 0:92bbf3093a25 178 GFS_2000DPS
csggreen 0:92bbf3093a25 179 };
csggreen 0:92bbf3093a25 180
csggreen 0:92bbf3093a25 181 enum Mscale {
csggreen 0:92bbf3093a25 182 MFS_14BITS = 0, // 0.6 mG per LSB
csggreen 0:92bbf3093a25 183 MFS_16BITS // 0.15 mG per LSB
csggreen 0:92bbf3093a25 184 };
csggreen 0:92bbf3093a25 185
csggreen 0:92bbf3093a25 186 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
csggreen 0:92bbf3093a25 187 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
csggreen 0:92bbf3093a25 188 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
csggreen 0:92bbf3093a25 189 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
csggreen 0:92bbf3093a25 190 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
csggreen 0:92bbf3093a25 191
csggreen 0:92bbf3093a25 192 //Set up I2C, (SDA,SCL)
csggreen 0:92bbf3093a25 193 I2C i2c(I2C_SDA, I2C_SCL);
csggreen 0:92bbf3093a25 194
csggreen 0:92bbf3093a25 195 DigitalOut myled(LED1);
csggreen 0:92bbf3093a25 196
csggreen 0:92bbf3093a25 197 // Pin definitions
csggreen 0:92bbf3093a25 198 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
csggreen 0:92bbf3093a25 199
csggreen 0:92bbf3093a25 200 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
csggreen 0:92bbf3093a25 201 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
csggreen 0:92bbf3093a25 202 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
csggreen 0:92bbf3093a25 203 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
csggreen 0:92bbf3093a25 204 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
csggreen 0:92bbf3093a25 205 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
csggreen 0:92bbf3093a25 206 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
csggreen 0:92bbf3093a25 207 float temperature;
csggreen 0:92bbf3093a25 208 float SelfTest[6];
csggreen 0:92bbf3093a25 209
csggreen 0:92bbf3093a25 210 int delt_t = 0; // used to control display output rate
csggreen 0:92bbf3093a25 211 int count = 0; // used to control display output rate
csggreen 0:92bbf3093a25 212
csggreen 0:92bbf3093a25 213 // parameters for 6 DoF sensor fusion calculations
csggreen 0:92bbf3093a25 214 float PI = 3.14159265358979323846f;
csggreen 0:92bbf3093a25 215 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
csggreen 0:92bbf3093a25 216 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
csggreen 0:92bbf3093a25 217 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
csggreen 0:92bbf3093a25 218 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
csggreen 0:92bbf3093a25 219 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
csggreen 0:92bbf3093a25 220 #define Ki 0.0f
csggreen 0:92bbf3093a25 221
csggreen 0:92bbf3093a25 222 float pitch, yaw, roll;
csggreen 0:92bbf3093a25 223 float deltat = 0.0f; // integration interval for both filter schemes
csggreen 0:92bbf3093a25 224 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
csggreen 0:92bbf3093a25 225 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
csggreen 0:92bbf3093a25 226 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
csggreen 0:92bbf3093a25 227
csggreen 0:92bbf3093a25 228 class MPU9250 {
csggreen 0:92bbf3093a25 229
csggreen 0:92bbf3093a25 230 protected:
csggreen 0:92bbf3093a25 231
csggreen 0:92bbf3093a25 232 public:
csggreen 0:92bbf3093a25 233 //===================================================================================================================
csggreen 0:92bbf3093a25 234 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
csggreen 0:92bbf3093a25 235 //===================================================================================================================
csggreen 0:92bbf3093a25 236
csggreen 0:92bbf3093a25 237 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
csggreen 0:92bbf3093a25 238 {
csggreen 0:92bbf3093a25 239 char data_write[2];
csggreen 0:92bbf3093a25 240 data_write[0] = subAddress;
csggreen 0:92bbf3093a25 241 data_write[1] = data;
csggreen 0:92bbf3093a25 242 i2c.write(address, data_write, 2, 0);
csggreen 0:92bbf3093a25 243 }
csggreen 0:92bbf3093a25 244
csggreen 0:92bbf3093a25 245 char readByte(uint8_t address, uint8_t subAddress)
csggreen 0:92bbf3093a25 246 {
csggreen 0:92bbf3093a25 247 char data[1]; // `data` will store the register data
csggreen 0:92bbf3093a25 248 char data_write[1];
csggreen 0:92bbf3093a25 249 data_write[0] = subAddress;
csggreen 0:92bbf3093a25 250 i2c.write(address, data_write, 1, 1); // no stop
csggreen 0:92bbf3093a25 251 i2c.read(address, data, 1, 0);
csggreen 0:92bbf3093a25 252 return data[0];
csggreen 0:92bbf3093a25 253 }
csggreen 0:92bbf3093a25 254
csggreen 0:92bbf3093a25 255 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
csggreen 0:92bbf3093a25 256 {
csggreen 0:92bbf3093a25 257 char data[14];
csggreen 0:92bbf3093a25 258 char data_write[1];
csggreen 0:92bbf3093a25 259 data_write[0] = subAddress;
csggreen 0:92bbf3093a25 260 i2c.write(address, data_write, 1, 1); // no stop
csggreen 0:92bbf3093a25 261 i2c.read(address, data, count, 0);
csggreen 0:92bbf3093a25 262 for(int ii = 0; ii < count; ii++) {
csggreen 0:92bbf3093a25 263 dest[ii] = data[ii];
csggreen 0:92bbf3093a25 264 }
csggreen 0:92bbf3093a25 265 }
csggreen 0:92bbf3093a25 266
csggreen 0:92bbf3093a25 267
csggreen 0:92bbf3093a25 268 void getMres() {
csggreen 0:92bbf3093a25 269 switch (Mscale)
csggreen 0:92bbf3093a25 270 {
csggreen 0:92bbf3093a25 271 // Possible magnetometer scales (and their register bit settings) are:
csggreen 0:92bbf3093a25 272 // 14 bit resolution (0) and 16 bit resolution (1)
csggreen 0:92bbf3093a25 273 case MFS_14BITS:
csggreen 0:92bbf3093a25 274 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
csggreen 0:92bbf3093a25 275 break;
csggreen 0:92bbf3093a25 276 case MFS_16BITS:
csggreen 0:92bbf3093a25 277 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
csggreen 0:92bbf3093a25 278 break;
csggreen 0:92bbf3093a25 279 }
csggreen 0:92bbf3093a25 280 }
csggreen 0:92bbf3093a25 281
csggreen 0:92bbf3093a25 282
csggreen 0:92bbf3093a25 283 void getGres() {
csggreen 0:92bbf3093a25 284 switch (Gscale)
csggreen 0:92bbf3093a25 285 {
csggreen 0:92bbf3093a25 286 // Possible gyro scales (and their register bit settings) are:
csggreen 0:92bbf3093a25 287 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
csggreen 0:92bbf3093a25 288 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
csggreen 0:92bbf3093a25 289 case GFS_250DPS:
csggreen 0:92bbf3093a25 290 gRes = 250.0/32768.0;
csggreen 0:92bbf3093a25 291 break;
csggreen 0:92bbf3093a25 292 case GFS_500DPS:
csggreen 0:92bbf3093a25 293 gRes = 500.0/32768.0;
csggreen 0:92bbf3093a25 294 break;
csggreen 0:92bbf3093a25 295 case GFS_1000DPS:
csggreen 0:92bbf3093a25 296 gRes = 1000.0/32768.0;
csggreen 0:92bbf3093a25 297 break;
csggreen 0:92bbf3093a25 298 case GFS_2000DPS:
csggreen 0:92bbf3093a25 299 gRes = 2000.0/32768.0;
csggreen 0:92bbf3093a25 300 break;
csggreen 0:92bbf3093a25 301 }
csggreen 0:92bbf3093a25 302 }
csggreen 0:92bbf3093a25 303
csggreen 0:92bbf3093a25 304
csggreen 0:92bbf3093a25 305 void getAres() {
csggreen 0:92bbf3093a25 306 switch (Ascale)
csggreen 0:92bbf3093a25 307 {
csggreen 0:92bbf3093a25 308 // Possible accelerometer scales (and their register bit settings) are:
csggreen 0:92bbf3093a25 309 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
csggreen 0:92bbf3093a25 310 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
csggreen 0:92bbf3093a25 311 case AFS_2G:
csggreen 0:92bbf3093a25 312 aRes = 2.0/32768.0;
csggreen 0:92bbf3093a25 313 break;
csggreen 0:92bbf3093a25 314 case AFS_4G:
csggreen 0:92bbf3093a25 315 aRes = 4.0/32768.0;
csggreen 0:92bbf3093a25 316 break;
csggreen 0:92bbf3093a25 317 case AFS_8G:
csggreen 0:92bbf3093a25 318 aRes = 8.0/32768.0;
csggreen 0:92bbf3093a25 319 break;
csggreen 0:92bbf3093a25 320 case AFS_16G:
csggreen 0:92bbf3093a25 321 aRes = 16.0/32768.0;
csggreen 0:92bbf3093a25 322 break;
csggreen 0:92bbf3093a25 323 }
csggreen 0:92bbf3093a25 324 }
csggreen 0:92bbf3093a25 325
csggreen 0:92bbf3093a25 326
csggreen 0:92bbf3093a25 327 void readAccelData(int16_t * destination)
csggreen 0:92bbf3093a25 328 {
csggreen 0:92bbf3093a25 329 uint8_t rawData[6]; // x/y/z accel register data stored here
csggreen 0:92bbf3093a25 330 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
csggreen 0:92bbf3093a25 331 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
csggreen 0:92bbf3093a25 332 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
csggreen 0:92bbf3093a25 333 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
csggreen 0:92bbf3093a25 334 }
csggreen 0:92bbf3093a25 335
csggreen 0:92bbf3093a25 336 void readGyroData(int16_t * destination)
csggreen 0:92bbf3093a25 337 {
csggreen 0:92bbf3093a25 338 uint8_t rawData[6]; // x/y/z gyro register data stored here
csggreen 0:92bbf3093a25 339 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
csggreen 0:92bbf3093a25 340 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
csggreen 0:92bbf3093a25 341 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
csggreen 0:92bbf3093a25 342 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
csggreen 0:92bbf3093a25 343 }
csggreen 0:92bbf3093a25 344
csggreen 0:92bbf3093a25 345 void readMagData(int16_t * destination)
csggreen 0:92bbf3093a25 346 {
csggreen 0:92bbf3093a25 347 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
csggreen 0:92bbf3093a25 348 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
csggreen 0:92bbf3093a25 349 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
csggreen 0:92bbf3093a25 350 uint8_t c = rawData[6]; // End data read by reading ST2 register
csggreen 0:92bbf3093a25 351 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
csggreen 0:92bbf3093a25 352 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
csggreen 0:92bbf3093a25 353 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
csggreen 0:92bbf3093a25 354 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
csggreen 0:92bbf3093a25 355 }
csggreen 0:92bbf3093a25 356 }
csggreen 0:92bbf3093a25 357 }
csggreen 0:92bbf3093a25 358
csggreen 0:92bbf3093a25 359 int16_t readTempData()
csggreen 0:92bbf3093a25 360 {
csggreen 0:92bbf3093a25 361 uint8_t rawData[2]; // x/y/z gyro register data stored here
csggreen 0:92bbf3093a25 362 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
csggreen 0:92bbf3093a25 363 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
csggreen 0:92bbf3093a25 364 }
csggreen 0:92bbf3093a25 365
csggreen 0:92bbf3093a25 366
csggreen 0:92bbf3093a25 367 void resetMPU9250() {
csggreen 0:92bbf3093a25 368 // reset device
csggreen 0:92bbf3093a25 369 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
csggreen 0:92bbf3093a25 370 wait(0.1);
csggreen 0:92bbf3093a25 371 }
csggreen 0:92bbf3093a25 372
csggreen 0:92bbf3093a25 373 void initAK8963(float * destination)
csggreen 0:92bbf3093a25 374 {
csggreen 0:92bbf3093a25 375 // First extract the factory calibration for each magnetometer axis
csggreen 0:92bbf3093a25 376 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
csggreen 0:92bbf3093a25 377 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
csggreen 0:92bbf3093a25 378 wait(0.01);
csggreen 0:92bbf3093a25 379 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
csggreen 0:92bbf3093a25 380 wait(0.01);
csggreen 0:92bbf3093a25 381 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
csggreen 0:92bbf3093a25 382 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
csggreen 0:92bbf3093a25 383 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
csggreen 0:92bbf3093a25 384 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
csggreen 0:92bbf3093a25 385 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
csggreen 0:92bbf3093a25 386 wait(0.01);
csggreen 0:92bbf3093a25 387 // Configure the magnetometer for continuous read and highest resolution
csggreen 0:92bbf3093a25 388 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
csggreen 0:92bbf3093a25 389 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
csggreen 0:92bbf3093a25 390 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
csggreen 0:92bbf3093a25 391 wait(0.01);
csggreen 0:92bbf3093a25 392 }
csggreen 0:92bbf3093a25 393
csggreen 0:92bbf3093a25 394
csggreen 0:92bbf3093a25 395 void initMPU9250()
csggreen 0:92bbf3093a25 396 {
csggreen 0:92bbf3093a25 397 // Initialize MPU9250 device
csggreen 0:92bbf3093a25 398 // wake up device
csggreen 0:92bbf3093a25 399 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
csggreen 0:92bbf3093a25 400 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
csggreen 0:92bbf3093a25 401
csggreen 0:92bbf3093a25 402 // get stable time source
csggreen 0:92bbf3093a25 403 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
csggreen 0:92bbf3093a25 404
csggreen 0:92bbf3093a25 405 // Configure Gyro and Accelerometer
csggreen 0:92bbf3093a25 406 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
csggreen 0:92bbf3093a25 407 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
csggreen 0:92bbf3093a25 408 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
csggreen 0:92bbf3093a25 409 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
csggreen 0:92bbf3093a25 410
csggreen 0:92bbf3093a25 411 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
csggreen 0:92bbf3093a25 412 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
csggreen 0:92bbf3093a25 413
csggreen 0:92bbf3093a25 414 // Set gyroscope full scale range
csggreen 0:92bbf3093a25 415 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
csggreen 0:92bbf3093a25 416 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
csggreen 0:92bbf3093a25 417 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
csggreen 0:92bbf3093a25 418 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
csggreen 0:92bbf3093a25 419 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
csggreen 0:92bbf3093a25 420
csggreen 0:92bbf3093a25 421 // Set accelerometer configuration
csggreen 0:92bbf3093a25 422 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
csggreen 0:92bbf3093a25 423 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
csggreen 0:92bbf3093a25 424 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
csggreen 0:92bbf3093a25 425 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
csggreen 0:92bbf3093a25 426
csggreen 0:92bbf3093a25 427 // Set accelerometer sample rate configuration
csggreen 0:92bbf3093a25 428 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
csggreen 0:92bbf3093a25 429 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
csggreen 0:92bbf3093a25 430 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
csggreen 0:92bbf3093a25 431 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
csggreen 0:92bbf3093a25 432 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
csggreen 0:92bbf3093a25 433
csggreen 0:92bbf3093a25 434 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
csggreen 0:92bbf3093a25 435 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
csggreen 0:92bbf3093a25 436
csggreen 0:92bbf3093a25 437 // Configure Interrupts and Bypass Enable
csggreen 0:92bbf3093a25 438 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
csggreen 0:92bbf3093a25 439 // can join the I2C bus and all can be controlled by the Arduino as master
csggreen 0:92bbf3093a25 440 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
csggreen 0:92bbf3093a25 441 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
csggreen 0:92bbf3093a25 442 }
csggreen 0:92bbf3093a25 443
csggreen 0:92bbf3093a25 444 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
csggreen 0:92bbf3093a25 445 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
csggreen 0:92bbf3093a25 446 void calibrateMPU9250(float * dest1, float * dest2)
csggreen 0:92bbf3093a25 447 {
csggreen 0:92bbf3093a25 448 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
csggreen 0:92bbf3093a25 449 uint16_t ii, packet_count, fifo_count;
csggreen 0:92bbf3093a25 450 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
csggreen 0:92bbf3093a25 451
csggreen 0:92bbf3093a25 452 // reset device, reset all registers, clear gyro and accelerometer bias registers
csggreen 0:92bbf3093a25 453 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
csggreen 0:92bbf3093a25 454 wait(0.1);
csggreen 0:92bbf3093a25 455
csggreen 0:92bbf3093a25 456 // get stable time source
csggreen 0:92bbf3093a25 457 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
csggreen 0:92bbf3093a25 458 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
csggreen 0:92bbf3093a25 459 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
csggreen 0:92bbf3093a25 460 wait(0.2);
csggreen 0:92bbf3093a25 461
csggreen 0:92bbf3093a25 462 // Configure device for bias calculation
csggreen 0:92bbf3093a25 463 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
csggreen 0:92bbf3093a25 464 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
csggreen 0:92bbf3093a25 465 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
csggreen 0:92bbf3093a25 466 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
csggreen 0:92bbf3093a25 467 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
csggreen 0:92bbf3093a25 468 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
csggreen 0:92bbf3093a25 469 wait(0.015);
csggreen 0:92bbf3093a25 470
csggreen 0:92bbf3093a25 471 // Configure MPU9250 gyro and accelerometer for bias calculation
csggreen 0:92bbf3093a25 472 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
csggreen 0:92bbf3093a25 473 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
csggreen 0:92bbf3093a25 474 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
csggreen 0:92bbf3093a25 475 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
csggreen 0:92bbf3093a25 476
csggreen 0:92bbf3093a25 477 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
csggreen 0:92bbf3093a25 478 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
csggreen 0:92bbf3093a25 479
csggreen 0:92bbf3093a25 480 // Configure FIFO to capture accelerometer and gyro data for bias calculation
csggreen 0:92bbf3093a25 481 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
csggreen 0:92bbf3093a25 482 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
csggreen 0:92bbf3093a25 483 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
csggreen 0:92bbf3093a25 484
csggreen 0:92bbf3093a25 485 // At end of sample accumulation, turn off FIFO sensor read
csggreen 0:92bbf3093a25 486 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
csggreen 0:92bbf3093a25 487 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
csggreen 0:92bbf3093a25 488 fifo_count = ((uint16_t)data[0] << 8) | data[1];
csggreen 0:92bbf3093a25 489 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
csggreen 0:92bbf3093a25 490
csggreen 0:92bbf3093a25 491 for (ii = 0; ii < packet_count; ii++) {
csggreen 0:92bbf3093a25 492 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
csggreen 0:92bbf3093a25 493 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
csggreen 0:92bbf3093a25 494 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
csggreen 0:92bbf3093a25 495 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
csggreen 0:92bbf3093a25 496 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
csggreen 0:92bbf3093a25 497 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
csggreen 0:92bbf3093a25 498 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
csggreen 0:92bbf3093a25 499 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
csggreen 0:92bbf3093a25 500
csggreen 0:92bbf3093a25 501 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
csggreen 0:92bbf3093a25 502 accel_bias[1] += (int32_t) accel_temp[1];
csggreen 0:92bbf3093a25 503 accel_bias[2] += (int32_t) accel_temp[2];
csggreen 0:92bbf3093a25 504 gyro_bias[0] += (int32_t) gyro_temp[0];
csggreen 0:92bbf3093a25 505 gyro_bias[1] += (int32_t) gyro_temp[1];
csggreen 0:92bbf3093a25 506 gyro_bias[2] += (int32_t) gyro_temp[2];
csggreen 0:92bbf3093a25 507
csggreen 0:92bbf3093a25 508 }
csggreen 0:92bbf3093a25 509 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
csggreen 0:92bbf3093a25 510 accel_bias[1] /= (int32_t) packet_count;
csggreen 0:92bbf3093a25 511 accel_bias[2] /= (int32_t) packet_count;
csggreen 0:92bbf3093a25 512 gyro_bias[0] /= (int32_t) packet_count;
csggreen 0:92bbf3093a25 513 gyro_bias[1] /= (int32_t) packet_count;
csggreen 0:92bbf3093a25 514 gyro_bias[2] /= (int32_t) packet_count;
csggreen 0:92bbf3093a25 515
csggreen 0:92bbf3093a25 516 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
csggreen 0:92bbf3093a25 517 else {accel_bias[2] += (int32_t) accelsensitivity;}
csggreen 0:92bbf3093a25 518
csggreen 0:92bbf3093a25 519 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
csggreen 0:92bbf3093a25 520 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
csggreen 0:92bbf3093a25 521 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
csggreen 0:92bbf3093a25 522 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
csggreen 0:92bbf3093a25 523 data[3] = (-gyro_bias[1]/4) & 0xFF;
csggreen 0:92bbf3093a25 524 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
csggreen 0:92bbf3093a25 525 data[5] = (-gyro_bias[2]/4) & 0xFF;
csggreen 0:92bbf3093a25 526
csggreen 0:92bbf3093a25 527 /// Push gyro biases to hardware registers
csggreen 0:92bbf3093a25 528 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
csggreen 0:92bbf3093a25 529 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
csggreen 0:92bbf3093a25 530 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
csggreen 0:92bbf3093a25 531 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
csggreen 0:92bbf3093a25 532 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
csggreen 0:92bbf3093a25 533 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
csggreen 0:92bbf3093a25 534 */
csggreen 0:92bbf3093a25 535 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
csggreen 0:92bbf3093a25 536 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
csggreen 0:92bbf3093a25 537 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
csggreen 0:92bbf3093a25 538
csggreen 0:92bbf3093a25 539 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
csggreen 0:92bbf3093a25 540 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
csggreen 0:92bbf3093a25 541 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
csggreen 0:92bbf3093a25 542 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
csggreen 0:92bbf3093a25 543 // the accelerometer biases calculated above must be divided by 8.
csggreen 0:92bbf3093a25 544
csggreen 0:92bbf3093a25 545 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
csggreen 0:92bbf3093a25 546 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
csggreen 0:92bbf3093a25 547 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
csggreen 0:92bbf3093a25 548 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
csggreen 0:92bbf3093a25 549 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
csggreen 0:92bbf3093a25 550 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
csggreen 0:92bbf3093a25 551 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
csggreen 0:92bbf3093a25 552
csggreen 0:92bbf3093a25 553 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
csggreen 0:92bbf3093a25 554 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
csggreen 0:92bbf3093a25 555
csggreen 0:92bbf3093a25 556 for(ii = 0; ii < 3; ii++) {
csggreen 0:92bbf3093a25 557 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
csggreen 0:92bbf3093a25 558 }
csggreen 0:92bbf3093a25 559
csggreen 0:92bbf3093a25 560 // Construct total accelerometer bias, including calculated average accelerometer bias from above
csggreen 0:92bbf3093a25 561 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
csggreen 0:92bbf3093a25 562 accel_bias_reg[1] -= (accel_bias[1]/8);
csggreen 0:92bbf3093a25 563 accel_bias_reg[2] -= (accel_bias[2]/8);
csggreen 0:92bbf3093a25 564
csggreen 0:92bbf3093a25 565 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
csggreen 0:92bbf3093a25 566 data[1] = (accel_bias_reg[0]) & 0xFF;
csggreen 0:92bbf3093a25 567 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
csggreen 0:92bbf3093a25 568 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
csggreen 0:92bbf3093a25 569 data[3] = (accel_bias_reg[1]) & 0xFF;
csggreen 0:92bbf3093a25 570 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
csggreen 0:92bbf3093a25 571 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
csggreen 0:92bbf3093a25 572 data[5] = (accel_bias_reg[2]) & 0xFF;
csggreen 0:92bbf3093a25 573 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
csggreen 0:92bbf3093a25 574
csggreen 0:92bbf3093a25 575 // Apparently this is not working for the acceleration biases in the MPU-9250
csggreen 0:92bbf3093a25 576 // Are we handling the temperature correction bit properly?
csggreen 0:92bbf3093a25 577 // Push accelerometer biases to hardware registers
csggreen 0:92bbf3093a25 578 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
csggreen 0:92bbf3093a25 579 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
csggreen 0:92bbf3093a25 580 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
csggreen 0:92bbf3093a25 581 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
csggreen 0:92bbf3093a25 582 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
csggreen 0:92bbf3093a25 583 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
csggreen 0:92bbf3093a25 584 */
csggreen 0:92bbf3093a25 585 // Output scaled accelerometer biases for manual subtraction in the main program
csggreen 0:92bbf3093a25 586 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
csggreen 0:92bbf3093a25 587 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
csggreen 0:92bbf3093a25 588 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
csggreen 0:92bbf3093a25 589 }
csggreen 0:92bbf3093a25 590
csggreen 0:92bbf3093a25 591
csggreen 0:92bbf3093a25 592 // Accelerometer and gyroscope self test; check calibration wrt factory settings
csggreen 0:92bbf3093a25 593 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
csggreen 0:92bbf3093a25 594 {
csggreen 0:92bbf3093a25 595 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
csggreen 0:92bbf3093a25 596 uint8_t selfTest[6];
csggreen 0:92bbf3093a25 597 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
csggreen 0:92bbf3093a25 598 float factoryTrim[6];
csggreen 0:92bbf3093a25 599 uint8_t FS = 0;
csggreen 0:92bbf3093a25 600
csggreen 0:92bbf3093a25 601 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
csggreen 0:92bbf3093a25 602 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
csggreen 0:92bbf3093a25 603 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
csggreen 0:92bbf3093a25 604 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
csggreen 0:92bbf3093a25 605 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
csggreen 0:92bbf3093a25 606
csggreen 0:92bbf3093a25 607 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
csggreen 0:92bbf3093a25 608
csggreen 0:92bbf3093a25 609 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
csggreen 0:92bbf3093a25 610 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
csggreen 0:92bbf3093a25 611 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
csggreen 0:92bbf3093a25 612 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
csggreen 0:92bbf3093a25 613
csggreen 0:92bbf3093a25 614 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
csggreen 0:92bbf3093a25 615 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
csggreen 0:92bbf3093a25 616 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
csggreen 0:92bbf3093a25 617 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
csggreen 0:92bbf3093a25 618 }
csggreen 0:92bbf3093a25 619
csggreen 0:92bbf3093a25 620 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
csggreen 0:92bbf3093a25 621 aAvg[ii] /= 200;
csggreen 0:92bbf3093a25 622 gAvg[ii] /= 200;
csggreen 0:92bbf3093a25 623 }
csggreen 0:92bbf3093a25 624
csggreen 0:92bbf3093a25 625 // Configure the accelerometer for self-test
csggreen 0:92bbf3093a25 626 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
csggreen 0:92bbf3093a25 627 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
csggreen 0:92bbf3093a25 628 wait_ms(25); // Delay a while to let the device stabilize
csggreen 0:92bbf3093a25 629
csggreen 0:92bbf3093a25 630 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
csggreen 0:92bbf3093a25 631
csggreen 0:92bbf3093a25 632 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
csggreen 0:92bbf3093a25 633 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
csggreen 0:92bbf3093a25 634 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
csggreen 0:92bbf3093a25 635 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
csggreen 0:92bbf3093a25 636
csggreen 0:92bbf3093a25 637 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
csggreen 0:92bbf3093a25 638 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
csggreen 0:92bbf3093a25 639 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
csggreen 0:92bbf3093a25 640 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
csggreen 0:92bbf3093a25 641 }
csggreen 0:92bbf3093a25 642
csggreen 0:92bbf3093a25 643 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
csggreen 0:92bbf3093a25 644 aSTAvg[ii] /= 200;
csggreen 0:92bbf3093a25 645 gSTAvg[ii] /= 200;
csggreen 0:92bbf3093a25 646 }
csggreen 0:92bbf3093a25 647
csggreen 0:92bbf3093a25 648 // Configure the gyro and accelerometer for normal operation
csggreen 0:92bbf3093a25 649 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
csggreen 0:92bbf3093a25 650 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
csggreen 0:92bbf3093a25 651 wait_ms(25); // Delay a while to let the device stabilize
csggreen 0:92bbf3093a25 652
csggreen 0:92bbf3093a25 653 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
csggreen 0:92bbf3093a25 654 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
csggreen 0:92bbf3093a25 655 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
csggreen 0:92bbf3093a25 656 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
csggreen 0:92bbf3093a25 657 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
csggreen 0:92bbf3093a25 658 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
csggreen 0:92bbf3093a25 659 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
csggreen 0:92bbf3093a25 660
csggreen 0:92bbf3093a25 661 // Retrieve factory self-test value from self-test code reads
csggreen 0:92bbf3093a25 662 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
csggreen 0:92bbf3093a25 663 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
csggreen 0:92bbf3093a25 664 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
csggreen 0:92bbf3093a25 665 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
csggreen 0:92bbf3093a25 666 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
csggreen 0:92bbf3093a25 667 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
csggreen 0:92bbf3093a25 668
csggreen 0:92bbf3093a25 669 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
csggreen 0:92bbf3093a25 670 // To get percent, must multiply by 100
csggreen 0:92bbf3093a25 671 for (int i = 0; i < 3; i++) {
csggreen 0:92bbf3093a25 672 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
csggreen 0:92bbf3093a25 673 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
csggreen 0:92bbf3093a25 674 }
csggreen 0:92bbf3093a25 675
csggreen 0:92bbf3093a25 676 }
csggreen 0:92bbf3093a25 677
csggreen 0:92bbf3093a25 678
csggreen 0:92bbf3093a25 679
csggreen 0:92bbf3093a25 680 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
csggreen 0:92bbf3093a25 681 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
csggreen 0:92bbf3093a25 682 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
csggreen 0:92bbf3093a25 683 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
csggreen 0:92bbf3093a25 684 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
csggreen 0:92bbf3093a25 685 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
csggreen 0:92bbf3093a25 686 void Mad_Update(float ax, float ay, float az, float gx, float gy, float gz)
csggreen 0:92bbf3093a25 687 {
csggreen 0:92bbf3093a25 688 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
csggreen 0:92bbf3093a25 689 float norm; // vector norm
csggreen 0:92bbf3093a25 690 float f1, f2, f3; // objective funcyion elements
csggreen 0:92bbf3093a25 691 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
csggreen 0:92bbf3093a25 692 float qDot1, qDot2, qDot3, qDot4;
csggreen 0:92bbf3093a25 693 float hatDot1, hatDot2, hatDot3, hatDot4;
csggreen 0:92bbf3093a25 694 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
csggreen 0:92bbf3093a25 695
csggreen 0:92bbf3093a25 696 // Auxiliary variables to avoid repeated arithmetic
csggreen 0:92bbf3093a25 697 float _halfq1 = 0.5f * q1;
csggreen 0:92bbf3093a25 698 float _halfq2 = 0.5f * q2;
csggreen 0:92bbf3093a25 699 float _halfq3 = 0.5f * q3;
csggreen 0:92bbf3093a25 700 float _halfq4 = 0.5f * q4;
csggreen 0:92bbf3093a25 701 float _2q1 = 2.0f * q1;
csggreen 0:92bbf3093a25 702 float _2q2 = 2.0f * q2;
csggreen 0:92bbf3093a25 703 float _2q3 = 2.0f * q3;
csggreen 0:92bbf3093a25 704 float _2q4 = 2.0f * q4;
csggreen 0:92bbf3093a25 705 // float _2q1q3 = 2.0f * q1 * q3;
csggreen 0:92bbf3093a25 706 // float _2q3q4 = 2.0f * q3 * q4;
csggreen 0:92bbf3093a25 707
csggreen 0:92bbf3093a25 708 // Normalise accelerometer measurement
csggreen 0:92bbf3093a25 709 norm = sqrt(ax * ax + ay * ay + az * az);
csggreen 0:92bbf3093a25 710 if (norm == 0.0f) return; // handle NaN
csggreen 0:92bbf3093a25 711 norm = 1.0f/norm;
csggreen 0:92bbf3093a25 712 ax *= norm;
csggreen 0:92bbf3093a25 713 ay *= norm;
csggreen 0:92bbf3093a25 714 az *= norm;
csggreen 0:92bbf3093a25 715
csggreen 0:92bbf3093a25 716 // Compute the objective function and Jacobian
csggreen 0:92bbf3093a25 717 f1 = _2q2 * q4 - _2q1 * q3 - ax;
csggreen 0:92bbf3093a25 718 f2 = _2q1 * q2 + _2q3 * q4 - ay;
csggreen 0:92bbf3093a25 719 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
csggreen 0:92bbf3093a25 720 J_11or24 = _2q3;
csggreen 0:92bbf3093a25 721 J_12or23 = _2q4;
csggreen 0:92bbf3093a25 722 J_13or22 = _2q1;
csggreen 0:92bbf3093a25 723 J_14or21 = _2q2;
csggreen 0:92bbf3093a25 724 J_32 = 2.0f * J_14or21;
csggreen 0:92bbf3093a25 725 J_33 = 2.0f * J_11or24;
csggreen 0:92bbf3093a25 726
csggreen 0:92bbf3093a25 727 // Compute the gradient (matrix multiplication)
csggreen 0:92bbf3093a25 728 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
csggreen 0:92bbf3093a25 729 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
csggreen 0:92bbf3093a25 730 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
csggreen 0:92bbf3093a25 731 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
csggreen 0:92bbf3093a25 732
csggreen 0:92bbf3093a25 733 // Normalize the gradient
csggreen 0:92bbf3093a25 734 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
csggreen 0:92bbf3093a25 735 hatDot1 /= norm;
csggreen 0:92bbf3093a25 736 hatDot2 /= norm;
csggreen 0:92bbf3093a25 737 hatDot3 /= norm;
csggreen 0:92bbf3093a25 738 hatDot4 /= norm;
csggreen 0:92bbf3093a25 739
csggreen 0:92bbf3093a25 740 // Compute estimated gyroscope biases
csggreen 0:92bbf3093a25 741 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
csggreen 0:92bbf3093a25 742 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
csggreen 0:92bbf3093a25 743 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
csggreen 0:92bbf3093a25 744
csggreen 0:92bbf3093a25 745 // Compute and remove gyroscope biases
csggreen 0:92bbf3093a25 746 gbiasx += gerrx * deltat * zeta;
csggreen 0:92bbf3093a25 747 gbiasy += gerry * deltat * zeta;
csggreen 0:92bbf3093a25 748 gbiasz += gerrz * deltat * zeta;
csggreen 0:92bbf3093a25 749 // gx -= gbiasx;
csggreen 0:92bbf3093a25 750 // gy -= gbiasy;
csggreen 0:92bbf3093a25 751 // gz -= gbiasz;
csggreen 0:92bbf3093a25 752
csggreen 0:92bbf3093a25 753 // Compute the quaternion derivative
csggreen 0:92bbf3093a25 754 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
csggreen 0:92bbf3093a25 755 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
csggreen 0:92bbf3093a25 756 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
csggreen 0:92bbf3093a25 757 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
csggreen 0:92bbf3093a25 758
csggreen 0:92bbf3093a25 759 // Compute then integrate estimated quaternion derivative
csggreen 0:92bbf3093a25 760 q1 += (qDot1 -(beta * hatDot1)) * deltat;
csggreen 0:92bbf3093a25 761 q2 += (qDot2 -(beta * hatDot2)) * deltat;
csggreen 0:92bbf3093a25 762 q3 += (qDot3 -(beta * hatDot3)) * deltat;
csggreen 0:92bbf3093a25 763 q4 += (qDot4 -(beta * hatDot4)) * deltat;
csggreen 0:92bbf3093a25 764
csggreen 0:92bbf3093a25 765 // Normalize the quaternion
csggreen 0:92bbf3093a25 766 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
csggreen 0:92bbf3093a25 767 norm = 1.0f/norm;
csggreen 0:92bbf3093a25 768 q[0] = q1 * norm;
csggreen 0:92bbf3093a25 769 q[1] = q2 * norm;
csggreen 0:92bbf3093a25 770 q[2] = q3 * norm;
csggreen 0:92bbf3093a25 771 q[3] = q4 * norm;
csggreen 0:92bbf3093a25 772
csggreen 0:92bbf3093a25 773 }
csggreen 0:92bbf3093a25 774
csggreen 0:92bbf3093a25 775 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
csggreen 0:92bbf3093a25 776 {
csggreen 0:92bbf3093a25 777 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
csggreen 0:92bbf3093a25 778 float norm;
csggreen 0:92bbf3093a25 779 float hx, hy, _2bx, _2bz;
csggreen 0:92bbf3093a25 780 float s1, s2, s3, s4;
csggreen 0:92bbf3093a25 781 float qDot1, qDot2, qDot3, qDot4;
csggreen 0:92bbf3093a25 782
csggreen 0:92bbf3093a25 783 // Auxiliary variables to avoid repeated arithmetic
csggreen 0:92bbf3093a25 784 float _2q1mx;
csggreen 0:92bbf3093a25 785 float _2q1my;
csggreen 0:92bbf3093a25 786 float _2q1mz;
csggreen 0:92bbf3093a25 787 float _2q2mx;
csggreen 0:92bbf3093a25 788 float _4bx;
csggreen 0:92bbf3093a25 789 float _4bz;
csggreen 0:92bbf3093a25 790 float _2q1 = 2.0f * q1;
csggreen 0:92bbf3093a25 791 float _2q2 = 2.0f * q2;
csggreen 0:92bbf3093a25 792 float _2q3 = 2.0f * q3;
csggreen 0:92bbf3093a25 793 float _2q4 = 2.0f * q4;
csggreen 0:92bbf3093a25 794 float _2q1q3 = 2.0f * q1 * q3;
csggreen 0:92bbf3093a25 795 float _2q3q4 = 2.0f * q3 * q4;
csggreen 0:92bbf3093a25 796 float q1q1 = q1 * q1;
csggreen 0:92bbf3093a25 797 float q1q2 = q1 * q2;
csggreen 0:92bbf3093a25 798 float q1q3 = q1 * q3;
csggreen 0:92bbf3093a25 799 float q1q4 = q1 * q4;
csggreen 0:92bbf3093a25 800 float q2q2 = q2 * q2;
csggreen 0:92bbf3093a25 801 float q2q3 = q2 * q3;
csggreen 0:92bbf3093a25 802 float q2q4 = q2 * q4;
csggreen 0:92bbf3093a25 803 float q3q3 = q3 * q3;
csggreen 0:92bbf3093a25 804 float q3q4 = q3 * q4;
csggreen 0:92bbf3093a25 805 float q4q4 = q4 * q4;
csggreen 0:92bbf3093a25 806
csggreen 0:92bbf3093a25 807 // Normalise accelerometer measurement
csggreen 0:92bbf3093a25 808 norm = sqrt(ax * ax + ay * ay + az * az);
csggreen 0:92bbf3093a25 809 if (norm == 0.0f) return; // handle NaN
csggreen 0:92bbf3093a25 810 norm = 1.0f/norm;
csggreen 0:92bbf3093a25 811 ax *= norm;
csggreen 0:92bbf3093a25 812 ay *= norm;
csggreen 0:92bbf3093a25 813 az *= norm;
csggreen 0:92bbf3093a25 814
csggreen 0:92bbf3093a25 815 // Normalise magnetometer measurement
csggreen 0:92bbf3093a25 816 norm = sqrt(mx * mx + my * my + mz * mz);
csggreen 0:92bbf3093a25 817 if (norm == 0.0f) return; // handle NaN
csggreen 0:92bbf3093a25 818 norm = 1.0f/norm;
csggreen 0:92bbf3093a25 819 mx *= norm;
csggreen 0:92bbf3093a25 820 my *= norm;
csggreen 0:92bbf3093a25 821 mz *= norm;
csggreen 0:92bbf3093a25 822
csggreen 0:92bbf3093a25 823 // Reference direction of Earth's magnetic field
csggreen 0:92bbf3093a25 824 _2q1mx = 2.0f * q1 * mx;
csggreen 0:92bbf3093a25 825 _2q1my = 2.0f * q1 * my;
csggreen 0:92bbf3093a25 826 _2q1mz = 2.0f * q1 * mz;
csggreen 0:92bbf3093a25 827 _2q2mx = 2.0f * q2 * mx;
csggreen 0:92bbf3093a25 828 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
csggreen 0:92bbf3093a25 829 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
csggreen 0:92bbf3093a25 830 _2bx = sqrt(hx * hx + hy * hy);
csggreen 0:92bbf3093a25 831 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
csggreen 0:92bbf3093a25 832 _4bx = 2.0f * _2bx;
csggreen 0:92bbf3093a25 833 _4bz = 2.0f * _2bz;
csggreen 0:92bbf3093a25 834
csggreen 0:92bbf3093a25 835 // Gradient decent algorithm corrective step
csggreen 0:92bbf3093a25 836 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
csggreen 0:92bbf3093a25 837 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
csggreen 0:92bbf3093a25 838 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
csggreen 0:92bbf3093a25 839 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
csggreen 0:92bbf3093a25 840 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
csggreen 0:92bbf3093a25 841 norm = 1.0f/norm;
csggreen 0:92bbf3093a25 842 s1 *= norm;
csggreen 0:92bbf3093a25 843 s2 *= norm;
csggreen 0:92bbf3093a25 844 s3 *= norm;
csggreen 0:92bbf3093a25 845 s4 *= norm;
csggreen 0:92bbf3093a25 846
csggreen 0:92bbf3093a25 847 // Compute rate of change of quaternion
csggreen 0:92bbf3093a25 848 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
csggreen 0:92bbf3093a25 849 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
csggreen 0:92bbf3093a25 850 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
csggreen 0:92bbf3093a25 851 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
csggreen 0:92bbf3093a25 852
csggreen 0:92bbf3093a25 853 // Integrate to yield quaternion
csggreen 0:92bbf3093a25 854 q1 += qDot1 * deltat;
csggreen 0:92bbf3093a25 855 q2 += qDot2 * deltat;
csggreen 0:92bbf3093a25 856 q3 += qDot3 * deltat;
csggreen 0:92bbf3093a25 857 q4 += qDot4 * deltat;
csggreen 0:92bbf3093a25 858 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
csggreen 0:92bbf3093a25 859 norm = 1.0f/norm;
csggreen 0:92bbf3093a25 860 q[0] = q1 * norm;
csggreen 0:92bbf3093a25 861 q[1] = q2 * norm;
csggreen 0:92bbf3093a25 862 q[2] = q3 * norm;
csggreen 0:92bbf3093a25 863 q[3] = q4 * norm;
csggreen 0:92bbf3093a25 864
csggreen 0:92bbf3093a25 865 }
csggreen 0:92bbf3093a25 866
csggreen 0:92bbf3093a25 867
csggreen 0:92bbf3093a25 868
csggreen 0:92bbf3093a25 869 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
csggreen 0:92bbf3093a25 870 // measured ones.
csggreen 0:92bbf3093a25 871 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
csggreen 0:92bbf3093a25 872 {
csggreen 0:92bbf3093a25 873 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
csggreen 0:92bbf3093a25 874 float norm;
csggreen 0:92bbf3093a25 875 float hx, hy, bx, bz;
csggreen 0:92bbf3093a25 876 float vx, vy, vz, wx, wy, wz;
csggreen 0:92bbf3093a25 877 float ex, ey, ez;
csggreen 0:92bbf3093a25 878 float pa, pb, pc;
csggreen 0:92bbf3093a25 879
csggreen 0:92bbf3093a25 880 // Auxiliary variables to avoid repeated arithmetic
csggreen 0:92bbf3093a25 881 float q1q1 = q1 * q1;
csggreen 0:92bbf3093a25 882 float q1q2 = q1 * q2;
csggreen 0:92bbf3093a25 883 float q1q3 = q1 * q3;
csggreen 0:92bbf3093a25 884 float q1q4 = q1 * q4;
csggreen 0:92bbf3093a25 885 float q2q2 = q2 * q2;
csggreen 0:92bbf3093a25 886 float q2q3 = q2 * q3;
csggreen 0:92bbf3093a25 887 float q2q4 = q2 * q4;
csggreen 0:92bbf3093a25 888 float q3q3 = q3 * q3;
csggreen 0:92bbf3093a25 889 float q3q4 = q3 * q4;
csggreen 0:92bbf3093a25 890 float q4q4 = q4 * q4;
csggreen 0:92bbf3093a25 891
csggreen 0:92bbf3093a25 892 // Normalise accelerometer measurement
csggreen 0:92bbf3093a25 893 norm = sqrt(ax * ax + ay * ay + az * az);
csggreen 0:92bbf3093a25 894 if (norm == 0.0f) return; // handle NaN
csggreen 0:92bbf3093a25 895 norm = 1.0f / norm; // use reciprocal for division
csggreen 0:92bbf3093a25 896 ax *= norm;
csggreen 0:92bbf3093a25 897 ay *= norm;
csggreen 0:92bbf3093a25 898 az *= norm;
csggreen 0:92bbf3093a25 899
csggreen 0:92bbf3093a25 900 // Normalise magnetometer measurement
csggreen 0:92bbf3093a25 901 norm = sqrt(mx * mx + my * my + mz * mz);
csggreen 0:92bbf3093a25 902 if (norm == 0.0f) return; // handle NaN
csggreen 0:92bbf3093a25 903 norm = 1.0f / norm; // use reciprocal for division
csggreen 0:92bbf3093a25 904 mx *= norm;
csggreen 0:92bbf3093a25 905 my *= norm;
csggreen 0:92bbf3093a25 906 mz *= norm;
csggreen 0:92bbf3093a25 907
csggreen 0:92bbf3093a25 908 // Reference direction of Earth's magnetic field
csggreen 0:92bbf3093a25 909 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
csggreen 0:92bbf3093a25 910 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
csggreen 0:92bbf3093a25 911 bx = sqrt((hx * hx) + (hy * hy));
csggreen 0:92bbf3093a25 912 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
csggreen 0:92bbf3093a25 913
csggreen 0:92bbf3093a25 914 // Estimated direction of gravity and magnetic field
csggreen 0:92bbf3093a25 915 vx = 2.0f * (q2q4 - q1q3);
csggreen 0:92bbf3093a25 916 vy = 2.0f * (q1q2 + q3q4);
csggreen 0:92bbf3093a25 917 vz = q1q1 - q2q2 - q3q3 + q4q4;
csggreen 0:92bbf3093a25 918 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
csggreen 0:92bbf3093a25 919 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
csggreen 0:92bbf3093a25 920 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
csggreen 0:92bbf3093a25 921
csggreen 0:92bbf3093a25 922 // Error is cross product between estimated direction and measured direction of gravity
csggreen 0:92bbf3093a25 923 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
csggreen 0:92bbf3093a25 924 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
csggreen 0:92bbf3093a25 925 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
csggreen 0:92bbf3093a25 926 if (Ki > 0.0f)
csggreen 0:92bbf3093a25 927 {
csggreen 0:92bbf3093a25 928 eInt[0] += ex; // accumulate integral error
csggreen 0:92bbf3093a25 929 eInt[1] += ey;
csggreen 0:92bbf3093a25 930 eInt[2] += ez;
csggreen 0:92bbf3093a25 931 }
csggreen 0:92bbf3093a25 932 else
csggreen 0:92bbf3093a25 933 {
csggreen 0:92bbf3093a25 934 eInt[0] = 0.0f; // prevent integral wind up
csggreen 0:92bbf3093a25 935 eInt[1] = 0.0f;
csggreen 0:92bbf3093a25 936 eInt[2] = 0.0f;
csggreen 0:92bbf3093a25 937 }
csggreen 0:92bbf3093a25 938
csggreen 0:92bbf3093a25 939 // Apply feedback terms
csggreen 0:92bbf3093a25 940 gx = gx + Kp * ex + Ki * eInt[0];
csggreen 0:92bbf3093a25 941 gy = gy + Kp * ey + Ki * eInt[1];
csggreen 0:92bbf3093a25 942 gz = gz + Kp * ez + Ki * eInt[2];
csggreen 0:92bbf3093a25 943
csggreen 0:92bbf3093a25 944 // Integrate rate of change of quaternion
csggreen 0:92bbf3093a25 945 pa = q2;
csggreen 0:92bbf3093a25 946 pb = q3;
csggreen 0:92bbf3093a25 947 pc = q4;
csggreen 0:92bbf3093a25 948 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
csggreen 0:92bbf3093a25 949 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
csggreen 0:92bbf3093a25 950 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
csggreen 0:92bbf3093a25 951 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
csggreen 0:92bbf3093a25 952
csggreen 0:92bbf3093a25 953 // Normalise quaternion
csggreen 0:92bbf3093a25 954 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
csggreen 0:92bbf3093a25 955 norm = 1.0f / norm;
csggreen 0:92bbf3093a25 956 q[0] = q1 * norm;
csggreen 0:92bbf3093a25 957 q[1] = q2 * norm;
csggreen 0:92bbf3093a25 958 q[2] = q3 * norm;
csggreen 0:92bbf3093a25 959 q[3] = q4 * norm;
csggreen 0:92bbf3093a25 960
csggreen 0:92bbf3093a25 961 }
csggreen 0:92bbf3093a25 962 };
csggreen 0:92bbf3093a25 963 #endif