mbed SDK library sources

Fork of mbed-src by mbed official

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/cmsis/TARGET_STM/TARGET_NUCLEO_F103RB/stm32f10x_adc.c

Committer:
mbed_official
Date:
2014-01-07
Revision:
70:c1fbde68b492
Parent:
52:a51c77007319
Child:
84:f54042cbc282

File content as of revision 70:c1fbde68b492:

/**
  ******************************************************************************
  * @file    stm32f10x_adc.c
  * @author  MCD Application Team
  * @version V3.5.0
  * @date    11-March-2011
  * @brief   This file provides all the ADC firmware functions.
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_adc.h"
#include "stm32f10x_rcc.h"

/** @addtogroup STM32F10x_StdPeriph_Driver
  * @{
  */

/** @defgroup ADC 
  * @brief ADC driver modules
  * @{
  */

/** @defgroup ADC_Private_TypesDefinitions
  * @{
  */

/**
  * @}
  */

/** @defgroup ADC_Private_Defines
  * @{
  */

/* ADC DISCNUM mask */
#define CR1_DISCNUM_Reset           ((uint32_t)0xFFFF1FFF)

/* ADC DISCEN mask */
#define CR1_DISCEN_Set              ((uint32_t)0x00000800)
#define CR1_DISCEN_Reset            ((uint32_t)0xFFFFF7FF)

/* ADC JAUTO mask */
#define CR1_JAUTO_Set               ((uint32_t)0x00000400)
#define CR1_JAUTO_Reset             ((uint32_t)0xFFFFFBFF)

/* ADC JDISCEN mask */
#define CR1_JDISCEN_Set             ((uint32_t)0x00001000)
#define CR1_JDISCEN_Reset           ((uint32_t)0xFFFFEFFF)

/* ADC AWDCH mask */
#define CR1_AWDCH_Reset             ((uint32_t)0xFFFFFFE0)

/* ADC Analog watchdog enable mode mask */
#define CR1_AWDMode_Reset           ((uint32_t)0xFF3FFDFF)

/* CR1 register Mask */
#define CR1_CLEAR_Mask              ((uint32_t)0xFFF0FEFF)

/* ADC ADON mask */
#define CR2_ADON_Set                ((uint32_t)0x00000001)
#define CR2_ADON_Reset              ((uint32_t)0xFFFFFFFE)

/* ADC DMA mask */
#define CR2_DMA_Set                 ((uint32_t)0x00000100)
#define CR2_DMA_Reset               ((uint32_t)0xFFFFFEFF)

/* ADC RSTCAL mask */
#define CR2_RSTCAL_Set              ((uint32_t)0x00000008)

/* ADC CAL mask */
#define CR2_CAL_Set                 ((uint32_t)0x00000004)

/* ADC SWSTART mask */
#define CR2_SWSTART_Set             ((uint32_t)0x00400000)

/* ADC EXTTRIG mask */
#define CR2_EXTTRIG_Set             ((uint32_t)0x00100000)
#define CR2_EXTTRIG_Reset           ((uint32_t)0xFFEFFFFF)

/* ADC Software start mask */
#define CR2_EXTTRIG_SWSTART_Set     ((uint32_t)0x00500000)
#define CR2_EXTTRIG_SWSTART_Reset   ((uint32_t)0xFFAFFFFF)

/* ADC JEXTSEL mask */
#define CR2_JEXTSEL_Reset           ((uint32_t)0xFFFF8FFF)

/* ADC JEXTTRIG mask */
#define CR2_JEXTTRIG_Set            ((uint32_t)0x00008000)
#define CR2_JEXTTRIG_Reset          ((uint32_t)0xFFFF7FFF)

/* ADC JSWSTART mask */
#define CR2_JSWSTART_Set            ((uint32_t)0x00200000)

/* ADC injected software start mask */
#define CR2_JEXTTRIG_JSWSTART_Set   ((uint32_t)0x00208000)
#define CR2_JEXTTRIG_JSWSTART_Reset ((uint32_t)0xFFDF7FFF)

/* ADC TSPD mask */
#define CR2_TSVREFE_Set             ((uint32_t)0x00800000)
#define CR2_TSVREFE_Reset           ((uint32_t)0xFF7FFFFF)

/* CR2 register Mask */
#define CR2_CLEAR_Mask              ((uint32_t)0xFFF1F7FD)

/* ADC SQx mask */
#define SQR3_SQ_Set                 ((uint32_t)0x0000001F)
#define SQR2_SQ_Set                 ((uint32_t)0x0000001F)
#define SQR1_SQ_Set                 ((uint32_t)0x0000001F)

/* SQR1 register Mask */
#define SQR1_CLEAR_Mask             ((uint32_t)0xFF0FFFFF)

/* ADC JSQx mask */
#define JSQR_JSQ_Set                ((uint32_t)0x0000001F)

/* ADC JL mask */
#define JSQR_JL_Set                 ((uint32_t)0x00300000)
#define JSQR_JL_Reset               ((uint32_t)0xFFCFFFFF)

/* ADC SMPx mask */
#define SMPR1_SMP_Set               ((uint32_t)0x00000007)
#define SMPR2_SMP_Set               ((uint32_t)0x00000007)

/* ADC JDRx registers offset */
#define JDR_Offset                  ((uint8_t)0x28)

/* ADC1 DR register base address */
#define DR_ADDRESS                  ((uint32_t)0x4001244C)

/**
  * @}
  */

/** @defgroup ADC_Private_Macros
  * @{
  */

/**
  * @}
  */

/** @defgroup ADC_Private_Variables
  * @{
  */

/**
  * @}
  */

/** @defgroup ADC_Private_FunctionPrototypes
  * @{
  */

/**
  * @}
  */

/** @defgroup ADC_Private_Functions
  * @{
  */

/**
  * @brief  Deinitializes the ADCx peripheral registers to their default reset values.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @retval None
  */
void ADC_DeInit(ADC_TypeDef* ADCx)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  
  if (ADCx == ADC1)
  {
    /* Enable ADC1 reset state */
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC1, ENABLE);
    /* Release ADC1 from reset state */
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC1, DISABLE);
  }
  else if (ADCx == ADC2)
  {
    /* Enable ADC2 reset state */
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC2, ENABLE);
    /* Release ADC2 from reset state */
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC2, DISABLE);
  }
  else
  {
    if (ADCx == ADC3)
    {
      /* Enable ADC3 reset state */
      RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC3, ENABLE);
      /* Release ADC3 from reset state */
      RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC3, DISABLE);
    }
  }
}

/**
  * @brief  Initializes the ADCx peripheral according to the specified parameters
  *         in the ADC_InitStruct.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_InitStruct: pointer to an ADC_InitTypeDef structure that contains
  *         the configuration information for the specified ADC peripheral.
  * @retval None
  */
void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct)
{
  uint32_t tmpreg1 = 0;
  uint8_t tmpreg2 = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_MODE(ADC_InitStruct->ADC_Mode));
  assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ScanConvMode));
  assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ContinuousConvMode));
  assert_param(IS_ADC_EXT_TRIG(ADC_InitStruct->ADC_ExternalTrigConv));   
  assert_param(IS_ADC_DATA_ALIGN(ADC_InitStruct->ADC_DataAlign)); 
  assert_param(IS_ADC_REGULAR_LENGTH(ADC_InitStruct->ADC_NbrOfChannel));

  /*---------------------------- ADCx CR1 Configuration -----------------*/
  /* Get the ADCx CR1 value */
  tmpreg1 = ADCx->CR1;
  /* Clear DUALMOD and SCAN bits */
  tmpreg1 &= CR1_CLEAR_Mask;
  /* Configure ADCx: Dual mode and scan conversion mode */
  /* Set DUALMOD bits according to ADC_Mode value */
  /* Set SCAN bit according to ADC_ScanConvMode value */
  tmpreg1 |= (uint32_t)(ADC_InitStruct->ADC_Mode | ((uint32_t)ADC_InitStruct->ADC_ScanConvMode << 8));
  /* Write to ADCx CR1 */
  ADCx->CR1 = tmpreg1;

  /*---------------------------- ADCx CR2 Configuration -----------------*/
  /* Get the ADCx CR2 value */
  tmpreg1 = ADCx->CR2;
  /* Clear CONT, ALIGN and EXTSEL bits */
  tmpreg1 &= CR2_CLEAR_Mask;
  /* Configure ADCx: external trigger event and continuous conversion mode */
  /* Set ALIGN bit according to ADC_DataAlign value */
  /* Set EXTSEL bits according to ADC_ExternalTrigConv value */
  /* Set CONT bit according to ADC_ContinuousConvMode value */
  tmpreg1 |= (uint32_t)(ADC_InitStruct->ADC_DataAlign | ADC_InitStruct->ADC_ExternalTrigConv |
            ((uint32_t)ADC_InitStruct->ADC_ContinuousConvMode << 1));
  /* Write to ADCx CR2 */
  ADCx->CR2 = tmpreg1;

  /*---------------------------- ADCx SQR1 Configuration -----------------*/
  /* Get the ADCx SQR1 value */
  tmpreg1 = ADCx->SQR1;
  /* Clear L bits */
  tmpreg1 &= SQR1_CLEAR_Mask;
  /* Configure ADCx: regular channel sequence length */
  /* Set L bits according to ADC_NbrOfChannel value */
  tmpreg2 |= (uint8_t) (ADC_InitStruct->ADC_NbrOfChannel - (uint8_t)1);
  tmpreg1 |= (uint32_t)tmpreg2 << 20;
  /* Write to ADCx SQR1 */
  ADCx->SQR1 = tmpreg1;
}

/**
  * @brief  Fills each ADC_InitStruct member with its default value.
  * @param  ADC_InitStruct : pointer to an ADC_InitTypeDef structure which will be initialized.
  * @retval None
  */
void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct)
{
  /* Reset ADC init structure parameters values */
  /* Initialize the ADC_Mode member */
  ADC_InitStruct->ADC_Mode = ADC_Mode_Independent;
  /* initialize the ADC_ScanConvMode member */
  ADC_InitStruct->ADC_ScanConvMode = DISABLE;
  /* Initialize the ADC_ContinuousConvMode member */
  ADC_InitStruct->ADC_ContinuousConvMode = DISABLE;
  /* Initialize the ADC_ExternalTrigConv member */
  ADC_InitStruct->ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
  /* Initialize the ADC_DataAlign member */
  ADC_InitStruct->ADC_DataAlign = ADC_DataAlign_Right;
  /* Initialize the ADC_NbrOfChannel member */
  ADC_InitStruct->ADC_NbrOfChannel = 1;
}

/**
  * @brief  Enables or disables the specified ADC peripheral.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  NewState: new state of the ADCx peripheral.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Set the ADON bit to wake up the ADC from power down mode */
    ADCx->CR2 |= CR2_ADON_Set;
  }
  else
  {
    /* Disable the selected ADC peripheral */
    ADCx->CR2 &= CR2_ADON_Reset;
  }
}

/**
  * @brief  Enables or disables the specified ADC DMA request.
  * @param  ADCx: where x can be 1 or 3 to select the ADC peripheral.
  *   Note: ADC2 hasn't a DMA capability.
  * @param  NewState: new state of the selected ADC DMA transfer.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_DMA_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC DMA request */
    ADCx->CR2 |= CR2_DMA_Set;
  }
  else
  {
    /* Disable the selected ADC DMA request */
    ADCx->CR2 &= CR2_DMA_Reset;
  }
}

/**
  * @brief  Enables or disables the specified ADC interrupts.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_IT: specifies the ADC interrupt sources to be enabled or disabled. 
  *   This parameter can be any combination of the following values:
  *     @arg ADC_IT_EOC: End of conversion interrupt mask
  *     @arg ADC_IT_AWD: Analog watchdog interrupt mask
  *     @arg ADC_IT_JEOC: End of injected conversion interrupt mask
  * @param  NewState: new state of the specified ADC interrupts.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState)
{
  uint8_t itmask = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  assert_param(IS_ADC_IT(ADC_IT));
  /* Get the ADC IT index */
  itmask = (uint8_t)ADC_IT;
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC interrupts */
    ADCx->CR1 |= itmask;
  }
  else
  {
    /* Disable the selected ADC interrupts */
    ADCx->CR1 &= (~(uint32_t)itmask);
  }
}

/**
  * @brief  Resets the selected ADC calibration registers.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @retval None
  */
void ADC_ResetCalibration(ADC_TypeDef* ADCx)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  /* Resets the selected ADC calibration registers */  
  ADCx->CR2 |= CR2_RSTCAL_Set;
}

/**
  * @brief  Gets the selected ADC reset calibration registers status.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @retval The new state of ADC reset calibration registers (SET or RESET).
  */
FlagStatus ADC_GetResetCalibrationStatus(ADC_TypeDef* ADCx)
{
  FlagStatus bitstatus = RESET;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  /* Check the status of RSTCAL bit */
  if ((ADCx->CR2 & CR2_RSTCAL_Set) != (uint32_t)RESET)
  {
    /* RSTCAL bit is set */
    bitstatus = SET;
  }
  else
  {
    /* RSTCAL bit is reset */
    bitstatus = RESET;
  }
  /* Return the RSTCAL bit status */
  return  bitstatus;
}

/**
  * @brief  Starts the selected ADC calibration process.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @retval None
  */
void ADC_StartCalibration(ADC_TypeDef* ADCx)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  /* Enable the selected ADC calibration process */  
  ADCx->CR2 |= CR2_CAL_Set;
}

/**
  * @brief  Gets the selected ADC calibration status.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @retval The new state of ADC calibration (SET or RESET).
  */
FlagStatus ADC_GetCalibrationStatus(ADC_TypeDef* ADCx)
{
  FlagStatus bitstatus = RESET;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  /* Check the status of CAL bit */
  if ((ADCx->CR2 & CR2_CAL_Set) != (uint32_t)RESET)
  {
    /* CAL bit is set: calibration on going */
    bitstatus = SET;
  }
  else
  {
    /* CAL bit is reset: end of calibration */
    bitstatus = RESET;
  }
  /* Return the CAL bit status */
  return  bitstatus;
}

/**
  * @brief  Enables or disables the selected ADC software start conversion .
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  NewState: new state of the selected ADC software start conversion.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_SoftwareStartConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC conversion on external event and start the selected
       ADC conversion */
    ADCx->CR2 |= CR2_EXTTRIG_SWSTART_Set;
  }
  else
  {
    /* Disable the selected ADC conversion on external event and stop the selected
       ADC conversion */
    ADCx->CR2 &= CR2_EXTTRIG_SWSTART_Reset;
  }
}

/**
  * @brief  Gets the selected ADC Software start conversion Status.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @retval The new state of ADC software start conversion (SET or RESET).
  */
FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx)
{
  FlagStatus bitstatus = RESET;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  /* Check the status of SWSTART bit */
  if ((ADCx->CR2 & CR2_SWSTART_Set) != (uint32_t)RESET)
  {
    /* SWSTART bit is set */
    bitstatus = SET;
  }
  else
  {
    /* SWSTART bit is reset */
    bitstatus = RESET;
  }
  /* Return the SWSTART bit status */
  return  bitstatus;
}

/**
  * @brief  Configures the discontinuous mode for the selected ADC regular
  *         group channel.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  Number: specifies the discontinuous mode regular channel
  *         count value. This number must be between 1 and 8.
  * @retval None
  */
void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number)
{
  uint32_t tmpreg1 = 0;
  uint32_t tmpreg2 = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_REGULAR_DISC_NUMBER(Number));
  /* Get the old register value */
  tmpreg1 = ADCx->CR1;
  /* Clear the old discontinuous mode channel count */
  tmpreg1 &= CR1_DISCNUM_Reset;
  /* Set the discontinuous mode channel count */
  tmpreg2 = Number - 1;
  tmpreg1 |= tmpreg2 << 13;
  /* Store the new register value */
  ADCx->CR1 = tmpreg1;
}

/**
  * @brief  Enables or disables the discontinuous mode on regular group
  *         channel for the specified ADC
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  NewState: new state of the selected ADC discontinuous mode
  *         on regular group channel.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC regular discontinuous mode */
    ADCx->CR1 |= CR1_DISCEN_Set;
  }
  else
  {
    /* Disable the selected ADC regular discontinuous mode */
    ADCx->CR1 &= CR1_DISCEN_Reset;
  }
}

/**
  * @brief  Configures for the selected ADC regular channel its corresponding
  *         rank in the sequencer and its sample time.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_Channel: the ADC channel to configure. 
  *   This parameter can be one of the following values:
  *     @arg ADC_Channel_0: ADC Channel0 selected
  *     @arg ADC_Channel_1: ADC Channel1 selected
  *     @arg ADC_Channel_2: ADC Channel2 selected
  *     @arg ADC_Channel_3: ADC Channel3 selected
  *     @arg ADC_Channel_4: ADC Channel4 selected
  *     @arg ADC_Channel_5: ADC Channel5 selected
  *     @arg ADC_Channel_6: ADC Channel6 selected
  *     @arg ADC_Channel_7: ADC Channel7 selected
  *     @arg ADC_Channel_8: ADC Channel8 selected
  *     @arg ADC_Channel_9: ADC Channel9 selected
  *     @arg ADC_Channel_10: ADC Channel10 selected
  *     @arg ADC_Channel_11: ADC Channel11 selected
  *     @arg ADC_Channel_12: ADC Channel12 selected
  *     @arg ADC_Channel_13: ADC Channel13 selected
  *     @arg ADC_Channel_14: ADC Channel14 selected
  *     @arg ADC_Channel_15: ADC Channel15 selected
  *     @arg ADC_Channel_16: ADC Channel16 selected
  *     @arg ADC_Channel_17: ADC Channel17 selected
  * @param  Rank: The rank in the regular group sequencer. This parameter must be between 1 to 16.
  * @param  ADC_SampleTime: The sample time value to be set for the selected channel. 
  *   This parameter can be one of the following values:
  *     @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles
  *     @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles
  *     @arg ADC_SampleTime_13Cycles5: Sample time equal to 13.5 cycles
  *     @arg ADC_SampleTime_28Cycles5: Sample time equal to 28.5 cycles	
  *     @arg ADC_SampleTime_41Cycles5: Sample time equal to 41.5 cycles	
  *     @arg ADC_SampleTime_55Cycles5: Sample time equal to 55.5 cycles	
  *     @arg ADC_SampleTime_71Cycles5: Sample time equal to 71.5 cycles	
  *     @arg ADC_SampleTime_239Cycles5: Sample time equal to 239.5 cycles	
  * @retval None
  */
void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
{
  uint32_t tmpreg1 = 0, tmpreg2 = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_CHANNEL(ADC_Channel));
  assert_param(IS_ADC_REGULAR_RANK(Rank));
  assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
  /* if ADC_Channel_10 ... ADC_Channel_17 is selected */
  if (ADC_Channel > ADC_Channel_9)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR1;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR1_SMP_Set << (3 * (ADC_Channel - 10));
    /* Clear the old channel sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 10));
    /* Set the new channel sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR1 = tmpreg1;
  }
  else /* ADC_Channel include in ADC_Channel_[0..9] */
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR2;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR2_SMP_Set << (3 * ADC_Channel);
    /* Clear the old channel sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
    /* Set the new channel sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR2 = tmpreg1;
  }
  /* For Rank 1 to 6 */
  if (Rank < 7)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SQR3;
    /* Calculate the mask to clear */
    tmpreg2 = SQR3_SQ_Set << (5 * (Rank - 1));
    /* Clear the old SQx bits for the selected rank */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 1));
    /* Set the SQx bits for the selected rank */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SQR3 = tmpreg1;
  }
  /* For Rank 7 to 12 */
  else if (Rank < 13)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SQR2;
    /* Calculate the mask to clear */
    tmpreg2 = SQR2_SQ_Set << (5 * (Rank - 7));
    /* Clear the old SQx bits for the selected rank */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 7));
    /* Set the SQx bits for the selected rank */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SQR2 = tmpreg1;
  }
  /* For Rank 13 to 16 */
  else
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SQR1;
    /* Calculate the mask to clear */
    tmpreg2 = SQR1_SQ_Set << (5 * (Rank - 13));
    /* Clear the old SQx bits for the selected rank */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 13));
    /* Set the SQx bits for the selected rank */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SQR1 = tmpreg1;
  }
}

/**
  * @brief  Enables or disables the ADCx conversion through external trigger.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  NewState: new state of the selected ADC external trigger start of conversion.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_ExternalTrigConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC conversion on external event */
    ADCx->CR2 |= CR2_EXTTRIG_Set;
  }
  else
  {
    /* Disable the selected ADC conversion on external event */
    ADCx->CR2 &= CR2_EXTTRIG_Reset;
  }
}

/**
  * @brief  Returns the last ADCx conversion result data for regular channel.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @retval The Data conversion value.
  */
uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  /* Return the selected ADC conversion value */
  return (uint16_t) ADCx->DR;
}

/**
  * @brief  Returns the last ADC1 and ADC2 conversion result data in dual mode.
  * @retval The Data conversion value.
  */
uint32_t ADC_GetDualModeConversionValue(void)
{
  /* Return the dual mode conversion value */
  return (*(__IO uint32_t *) DR_ADDRESS);
}

/**
  * @brief  Enables or disables the selected ADC automatic injected group
  *         conversion after regular one.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  NewState: new state of the selected ADC auto injected conversion
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC automatic injected group conversion */
    ADCx->CR1 |= CR1_JAUTO_Set;
  }
  else
  {
    /* Disable the selected ADC automatic injected group conversion */
    ADCx->CR1 &= CR1_JAUTO_Reset;
  }
}

/**
  * @brief  Enables or disables the discontinuous mode for injected group
  *         channel for the specified ADC
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  NewState: new state of the selected ADC discontinuous mode
  *         on injected group channel.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC injected discontinuous mode */
    ADCx->CR1 |= CR1_JDISCEN_Set;
  }
  else
  {
    /* Disable the selected ADC injected discontinuous mode */
    ADCx->CR1 &= CR1_JDISCEN_Reset;
  }
}

/**
  * @brief  Configures the ADCx external trigger for injected channels conversion.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_ExternalTrigInjecConv: specifies the ADC trigger to start injected conversion. 
  *   This parameter can be one of the following values:
  *     @arg ADC_ExternalTrigInjecConv_T1_TRGO: Timer1 TRGO event selected (for ADC1, ADC2 and ADC3)
  *     @arg ADC_ExternalTrigInjecConv_T1_CC4: Timer1 capture compare4 selected (for ADC1, ADC2 and ADC3)
  *     @arg ADC_ExternalTrigInjecConv_T2_TRGO: Timer2 TRGO event selected (for ADC1 and ADC2)
  *     @arg ADC_ExternalTrigInjecConv_T2_CC1: Timer2 capture compare1 selected (for ADC1 and ADC2)
  *     @arg ADC_ExternalTrigInjecConv_T3_CC4: Timer3 capture compare4 selected (for ADC1 and ADC2)
  *     @arg ADC_ExternalTrigInjecConv_T4_TRGO: Timer4 TRGO event selected (for ADC1 and ADC2)
  *     @arg ADC_ExternalTrigInjecConv_Ext_IT15_TIM8_CC4: External interrupt line 15 or Timer8
  *                                                       capture compare4 event selected (for ADC1 and ADC2)                       
  *     @arg ADC_ExternalTrigInjecConv_T4_CC3: Timer4 capture compare3 selected (for ADC3 only)
  *     @arg ADC_ExternalTrigInjecConv_T8_CC2: Timer8 capture compare2 selected (for ADC3 only)                         
  *     @arg ADC_ExternalTrigInjecConv_T8_CC4: Timer8 capture compare4 selected (for ADC3 only)
  *     @arg ADC_ExternalTrigInjecConv_T5_TRGO: Timer5 TRGO event selected (for ADC3 only)                         
  *     @arg ADC_ExternalTrigInjecConv_T5_CC4: Timer5 capture compare4 selected (for ADC3 only)                        
  *     @arg ADC_ExternalTrigInjecConv_None: Injected conversion started by software and not
  *                                          by external trigger (for ADC1, ADC2 and ADC3)
  * @retval None
  */
void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv)
{
  uint32_t tmpreg = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_EXT_INJEC_TRIG(ADC_ExternalTrigInjecConv));
  /* Get the old register value */
  tmpreg = ADCx->CR2;
  /* Clear the old external event selection for injected group */
  tmpreg &= CR2_JEXTSEL_Reset;
  /* Set the external event selection for injected group */
  tmpreg |= ADC_ExternalTrigInjecConv;
  /* Store the new register value */
  ADCx->CR2 = tmpreg;
}

/**
  * @brief  Enables or disables the ADCx injected channels conversion through
  *         external trigger
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  NewState: new state of the selected ADC external trigger start of
  *         injected conversion.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_ExternalTrigInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC external event selection for injected group */
    ADCx->CR2 |= CR2_JEXTTRIG_Set;
  }
  else
  {
    /* Disable the selected ADC external event selection for injected group */
    ADCx->CR2 &= CR2_JEXTTRIG_Reset;
  }
}

/**
  * @brief  Enables or disables the selected ADC start of the injected 
  *         channels conversion.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  NewState: new state of the selected ADC software start injected conversion.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_SoftwareStartInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the selected ADC conversion for injected group on external event and start the selected
       ADC injected conversion */
    ADCx->CR2 |= CR2_JEXTTRIG_JSWSTART_Set;
  }
  else
  {
    /* Disable the selected ADC conversion on external event for injected group and stop the selected
       ADC injected conversion */
    ADCx->CR2 &= CR2_JEXTTRIG_JSWSTART_Reset;
  }
}

/**
  * @brief  Gets the selected ADC Software start injected conversion Status.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @retval The new state of ADC software start injected conversion (SET or RESET).
  */
FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx)
{
  FlagStatus bitstatus = RESET;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  /* Check the status of JSWSTART bit */
  if ((ADCx->CR2 & CR2_JSWSTART_Set) != (uint32_t)RESET)
  {
    /* JSWSTART bit is set */
    bitstatus = SET;
  }
  else
  {
    /* JSWSTART bit is reset */
    bitstatus = RESET;
  }
  /* Return the JSWSTART bit status */
  return  bitstatus;
}

/**
  * @brief  Configures for the selected ADC injected channel its corresponding
  *         rank in the sequencer and its sample time.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_Channel: the ADC channel to configure. 
  *   This parameter can be one of the following values:
  *     @arg ADC_Channel_0: ADC Channel0 selected
  *     @arg ADC_Channel_1: ADC Channel1 selected
  *     @arg ADC_Channel_2: ADC Channel2 selected
  *     @arg ADC_Channel_3: ADC Channel3 selected
  *     @arg ADC_Channel_4: ADC Channel4 selected
  *     @arg ADC_Channel_5: ADC Channel5 selected
  *     @arg ADC_Channel_6: ADC Channel6 selected
  *     @arg ADC_Channel_7: ADC Channel7 selected
  *     @arg ADC_Channel_8: ADC Channel8 selected
  *     @arg ADC_Channel_9: ADC Channel9 selected
  *     @arg ADC_Channel_10: ADC Channel10 selected
  *     @arg ADC_Channel_11: ADC Channel11 selected
  *     @arg ADC_Channel_12: ADC Channel12 selected
  *     @arg ADC_Channel_13: ADC Channel13 selected
  *     @arg ADC_Channel_14: ADC Channel14 selected
  *     @arg ADC_Channel_15: ADC Channel15 selected
  *     @arg ADC_Channel_16: ADC Channel16 selected
  *     @arg ADC_Channel_17: ADC Channel17 selected
  * @param  Rank: The rank in the injected group sequencer. This parameter must be between 1 and 4.
  * @param  ADC_SampleTime: The sample time value to be set for the selected channel. 
  *   This parameter can be one of the following values:
  *     @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles
  *     @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles
  *     @arg ADC_SampleTime_13Cycles5: Sample time equal to 13.5 cycles
  *     @arg ADC_SampleTime_28Cycles5: Sample time equal to 28.5 cycles	
  *     @arg ADC_SampleTime_41Cycles5: Sample time equal to 41.5 cycles	
  *     @arg ADC_SampleTime_55Cycles5: Sample time equal to 55.5 cycles	
  *     @arg ADC_SampleTime_71Cycles5: Sample time equal to 71.5 cycles	
  *     @arg ADC_SampleTime_239Cycles5: Sample time equal to 239.5 cycles	
  * @retval None
  */
void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
{
  uint32_t tmpreg1 = 0, tmpreg2 = 0, tmpreg3 = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_CHANNEL(ADC_Channel));
  assert_param(IS_ADC_INJECTED_RANK(Rank));
  assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
  /* if ADC_Channel_10 ... ADC_Channel_17 is selected */
  if (ADC_Channel > ADC_Channel_9)
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR1;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR1_SMP_Set << (3*(ADC_Channel - 10));
    /* Clear the old channel sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3*(ADC_Channel - 10));
    /* Set the new channel sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR1 = tmpreg1;
  }
  else /* ADC_Channel include in ADC_Channel_[0..9] */
  {
    /* Get the old register value */
    tmpreg1 = ADCx->SMPR2;
    /* Calculate the mask to clear */
    tmpreg2 = SMPR2_SMP_Set << (3 * ADC_Channel);
    /* Clear the old channel sample time */
    tmpreg1 &= ~tmpreg2;
    /* Calculate the mask to set */
    tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
    /* Set the new channel sample time */
    tmpreg1 |= tmpreg2;
    /* Store the new register value */
    ADCx->SMPR2 = tmpreg1;
  }
  /* Rank configuration */
  /* Get the old register value */
  tmpreg1 = ADCx->JSQR;
  /* Get JL value: Number = JL+1 */
  tmpreg3 =  (tmpreg1 & JSQR_JL_Set)>> 20;
  /* Calculate the mask to clear: ((Rank-1)+(4-JL-1)) */
  tmpreg2 = JSQR_JSQ_Set << (5 * (uint8_t)((Rank + 3) - (tmpreg3 + 1)));
  /* Clear the old JSQx bits for the selected rank */
  tmpreg1 &= ~tmpreg2;
  /* Calculate the mask to set: ((Rank-1)+(4-JL-1)) */
  tmpreg2 = (uint32_t)ADC_Channel << (5 * (uint8_t)((Rank + 3) - (tmpreg3 + 1)));
  /* Set the JSQx bits for the selected rank */
  tmpreg1 |= tmpreg2;
  /* Store the new register value */
  ADCx->JSQR = tmpreg1;
}

/**
  * @brief  Configures the sequencer length for injected channels
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  Length: The sequencer length. 
  *   This parameter must be a number between 1 to 4.
  * @retval None
  */
void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length)
{
  uint32_t tmpreg1 = 0;
  uint32_t tmpreg2 = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_INJECTED_LENGTH(Length));
  
  /* Get the old register value */
  tmpreg1 = ADCx->JSQR;
  /* Clear the old injected sequnence lenght JL bits */
  tmpreg1 &= JSQR_JL_Reset;
  /* Set the injected sequnence lenght JL bits */
  tmpreg2 = Length - 1; 
  tmpreg1 |= tmpreg2 << 20;
  /* Store the new register value */
  ADCx->JSQR = tmpreg1;
}

/**
  * @brief  Set the injected channels conversion value offset
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_InjectedChannel: the ADC injected channel to set its offset. 
  *   This parameter can be one of the following values:
  *     @arg ADC_InjectedChannel_1: Injected Channel1 selected
  *     @arg ADC_InjectedChannel_2: Injected Channel2 selected
  *     @arg ADC_InjectedChannel_3: Injected Channel3 selected
  *     @arg ADC_InjectedChannel_4: Injected Channel4 selected
  * @param  Offset: the offset value for the selected ADC injected channel
  *   This parameter must be a 12bit value.
  * @retval None
  */
void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset)
{
  __IO uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));
  assert_param(IS_ADC_OFFSET(Offset));  
  
  tmp = (uint32_t)ADCx;
  tmp += ADC_InjectedChannel;
  
  /* Set the selected injected channel data offset */
  *(__IO uint32_t *) tmp = (uint32_t)Offset;
}

/**
  * @brief  Returns the ADC injected channel conversion result
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_InjectedChannel: the converted ADC injected channel.
  *   This parameter can be one of the following values:
  *     @arg ADC_InjectedChannel_1: Injected Channel1 selected
  *     @arg ADC_InjectedChannel_2: Injected Channel2 selected
  *     @arg ADC_InjectedChannel_3: Injected Channel3 selected
  *     @arg ADC_InjectedChannel_4: Injected Channel4 selected
  * @retval The Data conversion value.
  */
uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel)
{
  __IO uint32_t tmp = 0;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));

  tmp = (uint32_t)ADCx;
  tmp += ADC_InjectedChannel + JDR_Offset;
  
  /* Returns the selected injected channel conversion data value */
  return (uint16_t) (*(__IO uint32_t*)  tmp);   
}

/**
  * @brief  Enables or disables the analog watchdog on single/all regular
  *         or injected channels
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_AnalogWatchdog: the ADC analog watchdog configuration.
  *   This parameter can be one of the following values:
  *     @arg ADC_AnalogWatchdog_SingleRegEnable: Analog watchdog on a single regular channel
  *     @arg ADC_AnalogWatchdog_SingleInjecEnable: Analog watchdog on a single injected channel
  *     @arg ADC_AnalogWatchdog_SingleRegOrInjecEnable: Analog watchdog on a single regular or injected channel
  *     @arg ADC_AnalogWatchdog_AllRegEnable: Analog watchdog on  all regular channel
  *     @arg ADC_AnalogWatchdog_AllInjecEnable: Analog watchdog on  all injected channel
  *     @arg ADC_AnalogWatchdog_AllRegAllInjecEnable: Analog watchdog on all regular and injected channels
  *     @arg ADC_AnalogWatchdog_None: No channel guarded by the analog watchdog
  * @retval None	  
  */
void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog)
{
  uint32_t tmpreg = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_ANALOG_WATCHDOG(ADC_AnalogWatchdog));
  /* Get the old register value */
  tmpreg = ADCx->CR1;
  /* Clear AWDEN, AWDENJ and AWDSGL bits */
  tmpreg &= CR1_AWDMode_Reset;
  /* Set the analog watchdog enable mode */
  tmpreg |= ADC_AnalogWatchdog;
  /* Store the new register value */
  ADCx->CR1 = tmpreg;
}

/**
  * @brief  Configures the high and low thresholds of the analog watchdog.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  HighThreshold: the ADC analog watchdog High threshold value.
  *   This parameter must be a 12bit value.
  * @param  LowThreshold: the ADC analog watchdog Low threshold value.
  *   This parameter must be a 12bit value.
  * @retval None
  */
void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,
                                        uint16_t LowThreshold)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_THRESHOLD(HighThreshold));
  assert_param(IS_ADC_THRESHOLD(LowThreshold));
  /* Set the ADCx high threshold */
  ADCx->HTR = HighThreshold;
  /* Set the ADCx low threshold */
  ADCx->LTR = LowThreshold;
}

/**
  * @brief  Configures the analog watchdog guarded single channel
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_Channel: the ADC channel to configure for the analog watchdog. 
  *   This parameter can be one of the following values:
  *     @arg ADC_Channel_0: ADC Channel0 selected
  *     @arg ADC_Channel_1: ADC Channel1 selected
  *     @arg ADC_Channel_2: ADC Channel2 selected
  *     @arg ADC_Channel_3: ADC Channel3 selected
  *     @arg ADC_Channel_4: ADC Channel4 selected
  *     @arg ADC_Channel_5: ADC Channel5 selected
  *     @arg ADC_Channel_6: ADC Channel6 selected
  *     @arg ADC_Channel_7: ADC Channel7 selected
  *     @arg ADC_Channel_8: ADC Channel8 selected
  *     @arg ADC_Channel_9: ADC Channel9 selected
  *     @arg ADC_Channel_10: ADC Channel10 selected
  *     @arg ADC_Channel_11: ADC Channel11 selected
  *     @arg ADC_Channel_12: ADC Channel12 selected
  *     @arg ADC_Channel_13: ADC Channel13 selected
  *     @arg ADC_Channel_14: ADC Channel14 selected
  *     @arg ADC_Channel_15: ADC Channel15 selected
  *     @arg ADC_Channel_16: ADC Channel16 selected
  *     @arg ADC_Channel_17: ADC Channel17 selected
  * @retval None
  */
void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel)
{
  uint32_t tmpreg = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_CHANNEL(ADC_Channel));
  /* Get the old register value */
  tmpreg = ADCx->CR1;
  /* Clear the Analog watchdog channel select bits */
  tmpreg &= CR1_AWDCH_Reset;
  /* Set the Analog watchdog channel */
  tmpreg |= ADC_Channel;
  /* Store the new register value */
  ADCx->CR1 = tmpreg;
}

/**
  * @brief  Enables or disables the temperature sensor and Vrefint channel.
  * @param  NewState: new state of the temperature sensor.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void ADC_TempSensorVrefintCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the temperature sensor and Vrefint channel*/
    ADC1->CR2 |= CR2_TSVREFE_Set;
  }
  else
  {
    /* Disable the temperature sensor and Vrefint channel*/
    ADC1->CR2 &= CR2_TSVREFE_Reset;
  }
}

/**
  * @brief  Checks whether the specified ADC flag is set or not.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_FLAG: specifies the flag to check. 
  *   This parameter can be one of the following values:
  *     @arg ADC_FLAG_AWD: Analog watchdog flag
  *     @arg ADC_FLAG_EOC: End of conversion flag
  *     @arg ADC_FLAG_JEOC: End of injected group conversion flag
  *     @arg ADC_FLAG_JSTRT: Start of injected group conversion flag
  *     @arg ADC_FLAG_STRT: Start of regular group conversion flag
  * @retval The new state of ADC_FLAG (SET or RESET).
  */
FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)
{
  FlagStatus bitstatus = RESET;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_GET_FLAG(ADC_FLAG));
  /* Check the status of the specified ADC flag */
  if ((ADCx->SR & ADC_FLAG) != (uint8_t)RESET)
  {
    /* ADC_FLAG is set */
    bitstatus = SET;
  }
  else
  {
    /* ADC_FLAG is reset */
    bitstatus = RESET;
  }
  /* Return the ADC_FLAG status */
  return  bitstatus;
}

/**
  * @brief  Clears the ADCx's pending flags.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_FLAG: specifies the flag to clear. 
  *   This parameter can be any combination of the following values:
  *     @arg ADC_FLAG_AWD: Analog watchdog flag
  *     @arg ADC_FLAG_EOC: End of conversion flag
  *     @arg ADC_FLAG_JEOC: End of injected group conversion flag
  *     @arg ADC_FLAG_JSTRT: Start of injected group conversion flag
  *     @arg ADC_FLAG_STRT: Start of regular group conversion flag
  * @retval None
  */
void ADC_ClearFlag(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_CLEAR_FLAG(ADC_FLAG));
  /* Clear the selected ADC flags */
  ADCx->SR = ~(uint32_t)ADC_FLAG;
}

/**
  * @brief  Checks whether the specified ADC interrupt has occurred or not.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_IT: specifies the ADC interrupt source to check. 
  *   This parameter can be one of the following values:
  *     @arg ADC_IT_EOC: End of conversion interrupt mask
  *     @arg ADC_IT_AWD: Analog watchdog interrupt mask
  *     @arg ADC_IT_JEOC: End of injected conversion interrupt mask
  * @retval The new state of ADC_IT (SET or RESET).
  */
ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT)
{
  ITStatus bitstatus = RESET;
  uint32_t itmask = 0, enablestatus = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_GET_IT(ADC_IT));
  /* Get the ADC IT index */
  itmask = ADC_IT >> 8;
  /* Get the ADC_IT enable bit status */
  enablestatus = (ADCx->CR1 & (uint8_t)ADC_IT) ;
  /* Check the status of the specified ADC interrupt */
  if (((ADCx->SR & itmask) != (uint32_t)RESET) && enablestatus)
  {
    /* ADC_IT is set */
    bitstatus = SET;
  }
  else
  {
    /* ADC_IT is reset */
    bitstatus = RESET;
  }
  /* Return the ADC_IT status */
  return  bitstatus;
}

/**
  * @brief  Clears the ADCx's interrupt pending bits.
  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
  * @param  ADC_IT: specifies the ADC interrupt pending bit to clear.
  *   This parameter can be any combination of the following values:
  *     @arg ADC_IT_EOC: End of conversion interrupt mask
  *     @arg ADC_IT_AWD: Analog watchdog interrupt mask
  *     @arg ADC_IT_JEOC: End of injected conversion interrupt mask
  * @retval None
  */
void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT)
{
  uint8_t itmask = 0;
  /* Check the parameters */
  assert_param(IS_ADC_ALL_PERIPH(ADCx));
  assert_param(IS_ADC_IT(ADC_IT));
  /* Get the ADC IT index */
  itmask = (uint8_t)(ADC_IT >> 8);
  /* Clear the selected ADC interrupt pending bits */
  ADCx->SR = ~(uint32_t)itmask;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/