mbed SDK library sources

Fork of mbed-src by mbed official

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/cmsis/TARGET_STM/TARGET_NUCLEO_L152RE/stm32l1xx_opamp.c

Committer:
mbed_official
Date:
2014-01-30
Revision:
80:66393a7b209d
Parent:
76:aeb1df146756

File content as of revision 80:66393a7b209d:

/**
  ******************************************************************************
  * @file    stm32l1xx_opamp.c
  * @author  MCD Application Team
  * @version V1.3.0
  * @date    31-January-2014
  * @brief   This file provides firmware functions to manage the following
  *          functionalities of the operational amplifiers (opamp) peripheral:
  *           + Initialization and configuration
  *           + Calibration management
  *          
  *  @verbatim
  ==============================================================================
                            ##### How to use this driver #####
  ==============================================================================
    [..] The device integrates three independent rail-to-rail operational amplifiers
         OPAMP1, OPAMP2 and OPAMP3:
               (+) Internal connections to the ADC.
               (+) Internal connections to the DAC.
               (+) Internal connection to COMP1 (only OPAMP3).
               (+) Internal connection for unity gain (voltage follower) configuration.
               (+) Calibration capability.
               (+) Selectable gain-bandwidth (2MHz in normal mode, 500KHz in low power mode).
    [..]    
         (#) COMP AHB clock must be enabled to get write access
             to OPAMP registers using
         (#) RCC_APB1PeriphClockCmd(RCC_APB1Periph_COMP, ENABLE)
  
         (#) Configure the corresponding GPIO to OPAMPx INP, OPAMPx_INN (if used)
             and OPAMPx_OUT in analog mode.
   
         (#) Configure (close/open) the OPAMP switches using OPAMP_SwitchCmd()

         (#) Enable the OPAMP peripheral using OPAMP_Cmd()

         -@- In order to use OPAMP outputs as ADC inputs, the opamps must be enabled
             and the ADC must use the OPAMP output channel number:
             (+@) OPAMP1 output is connected to ADC channel 3.
             (+@) OPAMP2 output is connected to ADC channel 8.
             (+@) OPAMP3 output is connected to ADC channel 13 (SW1 switch must be closed).

  *  @endverbatim
  *
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2>
  *
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
  * You may not use this file except in compliance with the License.
  * You may obtain a copy of the License at:
  *
  *        http://www.st.com/software_license_agreement_liberty_v2
  *
  * Unless required by applicable law or agreed to in writing, software 
  * distributed under the License is distributed on an "AS IS" BASIS, 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  * See the License for the specific language governing permissions and
  * limitations under the License.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_opamp.h"


/** @addtogroup STM32L1xx_StdPeriph_Driver
  * @{
  */

/** @defgroup OPAMP 
  * @brief OPAMP driver modules
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup OPAMP_Private_Functions
  * @{
  */

/** @defgroup OPAMP_Group1 Initialization and configuration
 *  @brief   Initialization and configuration
 *
@verbatim   
 ===============================================================================
                            ##### Initialization and configuration #####
 ===============================================================================

@endverbatim
  * @{
  */  

/**
  * @brief  Deinitialize the OPAMPs register to its default reset value.
  * @note   At startup, OTR and LPOTR registers are set to factory programmed values.
  * @param  None.
  * @retval None.
  */
void OPAMP_DeInit(void)
{
  /*!< Set OPAMP_CSR register to reset value */
  OPAMP->CSR = 0x00010101;
  /*!< Set OPAMP_OTR register to reset value */
  OPAMP->OTR = (uint32_t)(* (uint32_t*)FLASH_R_BASE + 0x00000038);
  /*!< Set OPAMP_LPOTR register to reset value */
  OPAMP->LPOTR = (uint32_t)(* (uint32_t*)FLASH_R_BASE + 0x0000003C);
}

/**
  * @brief  Close or Open the OPAMP switches.
  * @param  OPAMP_OPAMPxSwitchy: selects the OPAMPx switch.
  *   This parameter can be any combinations of the following values:
  *     @arg OPAMP_OPAMP1Switch3: used to connect internally OPAMP1 output to 
  *                               OPAMP1 negative input (internal follower)
  *     @arg OPAMP_OPAMP1Switch4: used to connect PA2 to OPAMP1 negative input
  *     @arg OPAMP_OPAMP1Switch5: used to connect PA1 to OPAMP1 positive input
  *     @arg OPAMP_OPAMP1Switch6: used to connect DAC_OUT1 to OPAMP1 positive input
  *     @arg OPAMP_OPAMP1SwitchANA: used to meet 1 nA input leakage
  *     @arg OPAMP_OPAMP2Switch3: used to connect internally OPAMP2 output to 
  *                               OPAMP2 negative input (internal follower)
  *     @arg OPAMP_OPAMP2Switch4: used to connect PA7 to OPAMP2 negative input
  *     @arg OPAMP_OPAMP2Switch5: used to connect PA6 to OPAMP2 positive input
  *     @arg OPAMP_OPAMP2Switch6: used to connect DAC_OUT1 to OPAMP2 positive input
  *     @arg OPAMP_OPAMP2Switch7: used to connect DAC_OUT2 to OPAMP2 positive input
  *     @arg OPAMP_OPAMP2SwitchANA: used to meet 1 nA input leakage
  *     @arg OPAMP_OPAMP3Switch3: used to connect internally OPAMP3 output to 
  *                               OPAMP3 negative input (internal follower)
  *     @arg OPAMP_OPAMP3Switch4: used to connect PC2 to OPAMP3 negative input
  *     @arg OPAMP_OPAMP3Switch5: used to connect PC1 to OPAMP3 positive input
  *     @arg OPAMP_OPAMP3Switch6: used to connect DAC_OUT1 to OPAMP3 positive input
  *     @arg OPAMP_OPAMP3SwitchANA: used to meet 1 nA input leakage on negative input
  *
  * @param  NewState: New state of the OPAMP switch. 
  *   This parameter can be:
  *     ENABLE to close the OPAMP switch
  *     or DISABLE to open the OPAMP switch
  * @note OPAMP_OPAMP2Switch6 and OPAMP_OPAMP2Switch7 mustn't be closed together.
  * @retval None
  */
void OPAMP_SwitchCmd(uint32_t OPAMP_OPAMPxSwitchy, FunctionalState NewState)
{
  /* Check the parameter */
  assert_param(IS_OPAMP_SWITCH(OPAMP_OPAMPxSwitchy));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Close the selected switches */
    OPAMP->CSR |= (uint32_t) OPAMP_OPAMPxSwitchy;
  }
  else
  {
    /* Open the selected switches */
    OPAMP->CSR &= (~(uint32_t)OPAMP_OPAMPxSwitchy);
  }
}

/**
  * @brief  Enable or disable the OPAMP peripheral.
  * @param  OPAMP_Selection: the selected OPAMP. 
  *   This parameter can be one of the following values:
  *     @arg OPAMP_Selection_OPAMP1: OPAMP1 is selected
  *     @arg OPAMP_Selection_OPAMP2: OPAMP2 is selected
  *     @arg OPAMP_Selection_OPAMP3: OPAMP3 is selected
  * @param  NewState: new state of the selected OPAMP peripheral. 
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void OPAMP_Cmd(uint32_t OPAMP_Selection, FunctionalState NewState)
{
  /* Check the parameter */
  assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Enable the selected OPAMP */
    OPAMP->CSR &= (~(uint32_t) OPAMP_Selection);
  }
  else
  {
    /* Disable the selected OPAMP */
    OPAMP->CSR |= (uint32_t) OPAMP_Selection;
  }
}

/**
  * @brief  Enable or disable the low power mode for OPAMP peripheral.
  * @param  OPAMP_Selection: the selected OPAMP. 
  *   This parameter can be one of the following values:
  *     @arg OPAMP_Selection_OPAMP1: OPAMP1 selected
  *     @arg OPAMP_Selection_OPAMP2: OPAMP2 selected
  *     @arg OPAMP_Selection_OPAMP3: OPAMP3 selected
  * @param  NewState: new low power state of the selected OPAMP peripheral.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void OPAMP_LowPowerCmd(uint32_t OPAMP_Selection, FunctionalState NewState)
{
  /* Check the parameter */
  assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Set the selected OPAMP in low power mode */
    OPAMP->CSR |= (uint32_t) (OPAMP_Selection << 7);
  }
  else
  {
    /* Disable the low power mode for the selected OPAMP */
    OPAMP->CSR &= (~(uint32_t) (OPAMP_Selection << 7));
  }
}

/**
  * @brief  Select the OPAMP power range.
  * @note   The OPAMP power range selection must be performed while OPAMPs are powered down.
  * @param  OPAMP_Range: the selected OPAMP power range. 
  *   This parameter can be one of the following values:
  *     @arg OPAMP_PowerRange_Low: Low power range is selected (VDDA is lower than 2.4V).
  *     @arg OPAMP_PowerRange_High: High power range is selected (VDDA is higher than 2.4V).
  * @retval None
  */
void OPAMP_PowerRangeSelect(uint32_t OPAMP_PowerRange)
{
  /* Check the parameter */
  assert_param(IS_OPAMP_RANGE(OPAMP_PowerRange));

  /* Reset the OPAMP range bit */
  OPAMP->CSR &= (~(uint32_t) (OPAMP_CSR_AOP_RANGE));

  /* Select the OPAMP power range */
  OPAMP->CSR |= OPAMP_PowerRange;
}

/**
  * @}
  */

/** @defgroup OPAMP_Group2 Calibration functions
 *  @brief   Calibration functions
 *
@verbatim   
 ===============================================================================
                            ##### Calibration functions #####
 ===============================================================================

@endverbatim
  * @{
  */

/**
  * @brief  Select the trimming mode.
  * @param  OffsetTrimming: the selected offset trimming mode. 
  *   This parameter  can be one of the following values:
  *     @arg OffsetTrimming_Factory: factory trimming values are used for offset
  *                                  calibration.
  *     @arg OffsetTrimming_User: user trimming values are used for offset
  *                               calibration.
  * @note When OffsetTrimming_User is selected, use OPAMP_OffsetTrimConfig()
  *       function or OPAMP_OffsetTrimLowPowerConfig() function to adjust 
  *       trimming value.
  * @retval None
  */
void OPAMP_OffsetTrimmingModeSelect(uint32_t OPAMP_Trimming)
{
  /* Check the parameter */
  assert_param(IS_OPAMP_TRIMMING(OPAMP_Trimming));

  /* Reset the OPAMP_OTR range bit */
  OPAMP->OTR &= (~(uint32_t) (OPAMP_OTR_OT_USER));

  /* Select the OPAMP offset trimming  */
  OPAMP->OTR |= OPAMP_Trimming;

}

/**
  * @brief  Configure the trimming value of OPAMPs in normal mode.
  * @param  OPAMP_Selection: the selected OPAMP. 
  *   This parameter can be one of the following values:
  *         @arg OPAMP_Selection_OPAMP1: OPAMP1 is selected to configure the trimming value.
  *         @arg OPAMP_Selection_OPAMP2: OPAMP2 is selected to configure the trimming value.
  *         @arg OPAMP_Selection_OPAMP3: OPAMP3 is selected to configure the trimming value.
  * @param  OPAMP_Input: the selected OPAMP input. 
  *   This parameter can be one of the following values:
  *         @arg OPAMP_Input_NMOS: NMOS input is selected to configure the trimming value.
  *         @arg OPAMP_Input_PMOS: PMOS input is selected to configure the trimming value.
  * @param  OPAMP_TrimValue: the trimming value. This parameter can be any value lower
  *         or equal to 0x0000001F. 
  * @retval None
  */
void OPAMP_OffsetTrimConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_Input, uint32_t OPAMP_TrimValue)
{
  uint32_t tmpreg = 0;

  /* Check the parameter */
  assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
  assert_param(IS_OPAMP_INPUT(OPAMP_Input));
  assert_param(IS_OPAMP_TRIMMINGVALUE(OPAMP_TrimValue));

  /* Get the OPAMP_OTR value */
  tmpreg = OPAMP->OTR;

  if(OPAMP_Selection == OPAMP_Selection_OPAMP1)
  {
    /* Reset the OPAMP inputs selection */
    tmpreg &= (uint32_t)~(OPAMP_CSR_OPA1CAL_L | OPAMP_CSR_OPA1CAL_H);
    /* Select the OPAMP input */
    tmpreg |= OPAMP_Input;

    if(OPAMP_Input == OPAMP_Input_PMOS)
    {
      /* Reset the trimming value corresponding to OPAMP1 PMOS input */
      tmpreg &= (0xFFFFFFE0);
      /* Set the new trimming value corresponding to OPAMP1 PMOS input */
      tmpreg |= (OPAMP_TrimValue);
    }
    else
    {
      /* Reset the trimming value corresponding to OPAMP1 NMOS input */
      tmpreg &= (0xFFFFFC1F);
      /* Set the new trimming value corresponding to OPAMP1 NMOS input */
      tmpreg |= (OPAMP_TrimValue<<5);
    }
  }
  else if (OPAMP_Selection == OPAMP_Selection_OPAMP2)
  {
    /* Reset the OPAMP inputs selection */
    tmpreg &= (uint32_t)~(OPAMP_CSR_OPA2CAL_L | OPAMP_CSR_OPA2CAL_H);
    /* Select the OPAMP input */
    tmpreg |= (uint32_t)(OPAMP_Input<<8);

    if(OPAMP_Input == OPAMP_Input_PMOS)
    {
      /* Reset the trimming value corresponding to OPAMP2 PMOS input */
      tmpreg &= (0xFFFF83FF);
      /* Set the new trimming value corresponding to OPAMP2 PMOS input */
      tmpreg |= (OPAMP_TrimValue<<10);
    }
    else
    {
      /* Reset the trimming value corresponding to OPAMP2 NMOS input */
      tmpreg &= (0xFFF07FFF);
      /* Set the new trimming value corresponding to OPAMP2 NMOS input */
      tmpreg |= (OPAMP_TrimValue<<15);
    }
  }
  else
  {
    /* Reset the OPAMP inputs selection */
    tmpreg &= (uint32_t)~(OPAMP_CSR_OPA3CAL_L | OPAMP_CSR_OPA3CAL_H);
    /* Select the OPAMP input */
    tmpreg |= (uint32_t)(OPAMP_Input<<16);

    if(OPAMP_Input == OPAMP_Input_PMOS)
    {
      /* Reset the trimming value corresponding to OPAMP3 PMOS input */
      tmpreg &= (0xFE0FFFFF);
      /* Set the new trimming value corresponding to OPAMP3 PMOS input */
      tmpreg |= (OPAMP_TrimValue<<20);
    }
    else
    {
      /* Reset the trimming value corresponding to OPAMP3 NMOS input */
      tmpreg &= (0xC1FFFFFF);
      /* Set the new trimming value corresponding to OPAMP3 NMOS input */
      tmpreg |= (OPAMP_TrimValue<<25);
    }
  }

  /* Set the OPAMP_OTR register */
  OPAMP->OTR = tmpreg;
}

/**
  * @brief  Configure the trimming value of OPAMPs in low power mode.
  * @param  OPAMP_Selection: the selected OPAMP. 
  *   This parameter can be one of the following values:
  *         @arg OPAMP_Selection_OPAMP1: OPAMP1 is selected to configure the trimming value.
  *         @arg OPAMP_Selection_OPAMP2: OPAMP2 is selected to configure the trimming value.
  *         @arg OPAMP_Selection_OPAMP3: OPAMP3 is selected to configure the trimming value.
  * @param  OPAMP_Input: the selected OPAMP input. 
  *   This parameter can be one of the following values:
  *         @arg OPAMP_Input_NMOS: NMOS input is selected to configure the trimming value.
  *         @arg OPAMP_Input_PMOS: PMOS input is selected to configure the trimming value.
  * @param  OPAMP_TrimValue: the trimming value. 
  *    This parameter can be any value lower or equal to 0x0000001F. 
  * @retval None
  */
void OPAMP_OffsetTrimLowPowerConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_Input, uint32_t OPAMP_TrimValue)
{
  uint32_t tmpreg = 0;

  /* Check the parameter */
  assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
  assert_param(IS_OPAMP_INPUT(OPAMP_Input));
  assert_param(IS_OPAMP_TRIMMINGVALUE(OPAMP_TrimValue));

  /* Get the OPAMP_LPOTR value */
  tmpreg = OPAMP->LPOTR;

  if(OPAMP_Selection == OPAMP_Selection_OPAMP1)
  {
    /* Reset the OPAMP inputs selection */
    tmpreg &= (uint32_t)~(OPAMP_CSR_OPA1CAL_L | OPAMP_CSR_OPA1CAL_H);
    /* Select the OPAMP input */
    tmpreg |= OPAMP_Input;

    if(OPAMP_Input == OPAMP_Input_PMOS)
    {
      /* Reset the trimming value corresponding to OPAMP1 PMOS input */
      tmpreg &= (0xFFFFFFE0);
      /* Set the new trimming value corresponding to OPAMP1 PMOS input */
      tmpreg |= (OPAMP_TrimValue);
    }
    else
    {
      /* Reset the trimming value corresponding to OPAMP1 NMOS input */
      tmpreg &= (0xFFFFFC1F);
      /* Set the new trimming value corresponding to OPAMP1 NMOS input */
      tmpreg |= (OPAMP_TrimValue<<5);
    }
  }
  else if (OPAMP_Selection == OPAMP_Selection_OPAMP2)
  {
    /* Reset the OPAMP inputs selection */
    tmpreg &= (uint32_t)~(OPAMP_CSR_OPA2CAL_L | OPAMP_CSR_OPA2CAL_H);
    /* Select the OPAMP input */
    tmpreg |= (uint32_t)(OPAMP_Input<<8);

    if(OPAMP_Input == OPAMP_Input_PMOS)
    {
      /* Reset the trimming value corresponding to OPAMP2 PMOS input */
      tmpreg &= (0xFFFF83FF);
      /* Set the new trimming value corresponding to OPAMP2 PMOS input */
      tmpreg |= (OPAMP_TrimValue<<10);
    }
    else
    {
      /* Reset the trimming value corresponding to OPAMP2 NMOS input */
      tmpreg &= (0xFFF07FFF);
      /* Set the new trimming value corresponding to OPAMP2 NMOS input */
      tmpreg |= (OPAMP_TrimValue<<15);
    }
  }
  else
  {
    /* Reset the OPAMP inputs selection */
    tmpreg &= (uint32_t)~(OPAMP_CSR_OPA3CAL_L | OPAMP_CSR_OPA3CAL_H);
    /* Select the OPAMP input */
    tmpreg |= (uint32_t)(OPAMP_Input<<16);

    if(OPAMP_Input == OPAMP_Input_PMOS)
    {
      /* Reset the trimming value corresponding to OPAMP3 PMOS input */
      tmpreg &= (0xFE0FFFFF);
      /* Set the new trimming value corresponding to OPAMP3 PMOS input */
      tmpreg |= (OPAMP_TrimValue<<20);
    }
    else
    {
      /* Reset the trimming value corresponding to OPAMP3 NMOS input */
      tmpreg &= (0xC1FFFFFF);
      /* Set the new trimming value corresponding to OPAMP3 NMOS input */
      tmpreg |= (OPAMP_TrimValue<<25);
    }
  }

  /* Set the OPAMP_LPOTR register */
  OPAMP->LPOTR = tmpreg;
}

/**
  * @brief  Checks whether the specified OPAMP calibration flag is set or not.
  * @note   User should wait until calibration flag change the value when changing
  *         the trimming value.
  * @param  OPAMP_Selection: the selected OPAMP. 
  *   This parameter can be one of the following values:
  *     @arg OPAMP_Selection_OPAMP1: OPAMP1 is selected.
  *     @arg OPAMP_Selection_OPAMP2: OPAMP2 is selected.
  *     @arg OPAMP_Selection_OPAMP3: OPAMP3 is selected.
  * @retval The new state of the OPAMP calibration flag (SET or RESET).
  */
FlagStatus OPAMP_GetFlagStatus(uint32_t OPAMP_Selection)
{
  FlagStatus bitstatus = RESET;
  uint32_t tmpreg = 0;

  /* Check the parameter */
  assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
  
  /* Get the CSR register value */
  tmpreg = OPAMP->CSR;

  /* Check if OPAMP1 is selected */
  if(OPAMP_Selection == OPAMP_Selection_OPAMP1)
  {
    /* Check OPAMP1 CAL bit status */
    if ((tmpreg & OPAMP_CSR_OPA1CALOUT) != (uint32_t)RESET)
    {
      bitstatus = SET;
    }
    else
    {
      bitstatus = RESET;
    }
  }
  /* Check if OPAMP2 is selected */
  else if(OPAMP_Selection == OPAMP_Selection_OPAMP2)
  {
    /* Check OPAMP2 CAL bit status */
    if ((tmpreg & OPAMP_CSR_OPA2CALOUT) != (uint32_t)RESET)
    {
      bitstatus = SET;
    } 
    else
    {
      bitstatus = RESET;
    }
  }
  else
  {
    /* Check OPAMP3 CAL bit status */
    if ((tmpreg & OPAMP_CSR_OPA3CALOUT) != (uint32_t)RESET)
    {
      bitstatus = SET;
    }
    else
    {
      bitstatus = RESET;
    }
  }
  return bitstatus;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/