Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_NORDIC/TARGET_NRF5/i2c_api.c
- Committer:
- <>
- Date:
- 2017-03-14
- Revision:
- 160:d5399cc887bb
- Parent:
- 150:02e0a0aed4ec
- Child:
- 165:e614a9f1c9e2
File content as of revision 160:d5399cc887bb:
/* * Copyright (c) 2017 Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA * integrated circuit in a product or a software update for such product, must reproduce * the above copyright notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be * used to endorse or promote products derived from this software without specific prior * written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary or object form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "i2c_api.h" #if DEVICE_I2C #include "mbed_assert.h" #include "mbed_error.h" #include "nrf_twi.h" #include "nrf_drv_common.h" #include "nrf_drv_config.h" #include "app_util_platform.h" #include "nrf_gpio.h" #include "nrf_delay.h" // An arbitrary value used as the counter in loops waiting for given event // (e.g. STOPPED), needed to avoid infinite loops (and not involve any timers // or tickers). #define TIMEOUT_VALUE 1000 #if DEVICE_I2C_ASYNCH #define TWI_IDX(obj) ((obj)->i2c.twi_idx) #else #define TWI_IDX(obj) ((obj)->twi_idx) #endif #define TWI_INFO(obj) (&m_twi_info[TWI_IDX(obj)]) typedef struct { bool initialized; uint32_t pselsda; uint32_t pselscl; nrf_twi_frequency_t frequency; bool start_twi; #if DEVICE_I2C_ASYNCH volatile bool active; uint8_t const *tx; size_t tx_length; uint8_t *rx; size_t rx_length; bool stop; volatile uint32_t events; void (*handler)(void); uint32_t evt_mask; #endif // DEVICE_I2C_ASYNCH } twi_info_t; static twi_info_t m_twi_info[TWI_COUNT]; static NRF_TWI_Type * const m_twi_instances[TWI_COUNT] = { #if TWI0_ENABLED NRF_TWI0, #endif #if TWI1_ENABLED NRF_TWI1, #endif }; void SPI0_TWI0_IRQHandler(void); void SPI1_TWI1_IRQHandler(void); static const peripheral_handler_desc_t twi_handlers[TWI_COUNT] = { #if TWI0_ENABLED { SPI0_TWI0_IRQn, (uint32_t) SPI0_TWI0_IRQHandler }, #endif #if TWI1_ENABLED { SPI1_TWI1_IRQn, (uint32_t) SPI1_TWI1_IRQHandler } #endif }; #ifdef NRF51 #define TWI_IRQ_PRIORITY APP_IRQ_PRIORITY_LOW #elif defined(NRF52) #define TWI_IRQ_PRIORITY APP_IRQ_PRIORITY_LOWEST #endif #if DEVICE_I2C_ASYNCH static void start_asynch_rx(twi_info_t *twi_info, NRF_TWI_Type *twi) { if (twi_info->rx_length == 1 && twi_info->stop) { nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK); } else { nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_SUSPEND_MASK); } nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTRX); } static void twi_irq_handler(uint8_t instance_idx) { twi_info_t *twi_info = &m_twi_info[instance_idx]; NRF_TWI_Type *twi = m_twi_instances[instance_idx]; if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); // In case of an error, force STOP. // The current transfer may be suspended (if it is RX), so it must be // resumed before the STOP task is triggered. nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi); twi_info->events |= I2C_EVENT_ERROR; if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) { twi_info->events |= I2C_EVENT_ERROR_NO_SLAVE; } if (errorsrc & NRF_TWI_ERROR_DATA_NACK) { twi_info->events |= I2C_EVENT_TRANSFER_EARLY_NACK; } } bool finished = false; if (nrf_twi_event_check(twi, NRF_TWI_EVENT_TXDSENT)) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT); MBED_ASSERT(twi_info->tx_length > 0); --(twi_info->tx_length); // Send next byte if there is still something to be sent. if (twi_info->tx_length > 0) { nrf_twi_txd_set(twi, *(twi_info->tx)); ++(twi_info->tx); // It TX is done, start RX if requested. } else if (twi_info->rx_length > 0) { start_asynch_rx(twi_info, twi); // If there is nothing more to do, finalize the transfer. } else { if (twi_info->stop) { nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); } else { nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND); finished = true; } twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE; } } if (nrf_twi_event_check(twi, NRF_TWI_EVENT_RXDREADY)) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY); MBED_ASSERT(twi_info->rx_length > 0); *(twi_info->rx) = nrf_twi_rxd_get(twi); ++(twi_info->rx); --(twi_info->rx_length); if (twi_info->rx_length > 0) { // If more bytes should be received, resume the transfer // (in case the stop condition should be generated after the next // byte, change the shortcuts configuration first). if (twi_info->rx_length == 1 && twi_info->stop) { nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK); } nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); } else { // If all requested bytes were received, finalize the transfer. finished = true; twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE; } } if (finished || nrf_twi_event_check(twi, NRF_TWI_EVENT_STOPPED) || (nrf_twi_int_enable_check(twi, NRF_TWI_INT_SUSPENDED_MASK) && nrf_twi_event_check(twi, NRF_TWI_EVENT_SUSPENDED))) { // There is no need to clear the STOPPED and SUSPENDED events here, // they will no longer generate the interrupt - see below. nrf_twi_shorts_set(twi, 0); // Disable all interrupt sources. nrf_twi_int_disable(twi, UINT32_MAX); twi_info->active = false; if (twi_info->handler) { twi_info->handler(); } } } #if TWI0_ENABLED static void irq_handler_twi0(void) { twi_irq_handler(TWI0_INSTANCE_INDEX); } #endif #if TWI1_ENABLED static void irq_handler_twi1(void) { twi_irq_handler(TWI1_INSTANCE_INDEX); } #endif static nrf_drv_irq_handler_t const m_twi_irq_handlers[TWI_COUNT] = { #if TWI0_ENABLED irq_handler_twi0, #endif #if TWI1_ENABLED irq_handler_twi1, #endif }; #endif // DEVICE_I2C_ASYNCH static void configure_twi_pin(uint32_t pin, nrf_gpio_pin_dir_t dir) { nrf_gpio_cfg(pin, dir, NRF_GPIO_PIN_INPUT_CONNECT, NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_S0D1, NRF_GPIO_PIN_NOSENSE); } static void twi_clear_bus(twi_info_t *twi_info) { // Try to set SDA high, and check if no slave tries to drive it low. nrf_gpio_pin_set(twi_info->pselsda); configure_twi_pin(twi_info->pselsda, NRF_GPIO_PIN_DIR_OUTPUT); // In case SDA is low, make up to 9 cycles on SCL line to help the slave // that pulls SDA low release it. if (!nrf_gpio_pin_read(twi_info->pselsda)) { nrf_gpio_pin_set(twi_info->pselscl); configure_twi_pin(twi_info->pselscl, NRF_GPIO_PIN_DIR_OUTPUT); nrf_delay_us(4); for (int i = 0; i < 9; i++) { if (nrf_gpio_pin_read(twi_info->pselsda)) { break; } nrf_gpio_pin_clear(twi_info->pselscl); nrf_delay_us(4); nrf_gpio_pin_set(twi_info->pselscl); nrf_delay_us(4); } // Finally, generate STOP condition to put the bus into initial state. nrf_gpio_pin_clear(twi_info->pselsda); nrf_delay_us(4); nrf_gpio_pin_set(twi_info->pselsda); } } void i2c_init(i2c_t *obj, PinName sda, PinName scl) { int i; for (i = 0; i < TWI_COUNT; ++i) { if (m_twi_info[i].initialized && m_twi_info[i].pselsda == (uint32_t)sda && m_twi_info[i].pselscl == (uint32_t)scl) { TWI_IDX(obj) = i; TWI_INFO(obj)->frequency = NRF_TWI_FREQ_100K; i2c_reset(obj); return; } } for (i = 0; i < TWI_COUNT; ++i) { if (!m_twi_info[i].initialized) { TWI_IDX(obj) = i; twi_info_t *twi_info = TWI_INFO(obj); twi_info->initialized = true; twi_info->pselsda = (uint32_t)sda; twi_info->pselscl = (uint32_t)scl; twi_info->frequency = NRF_TWI_FREQ_100K; twi_info->start_twi = false; #if DEVICE_I2C_ASYNCH twi_info->active = false; #endif twi_clear_bus(twi_info); configure_twi_pin(twi_info->pselsda, NRF_GPIO_PIN_DIR_INPUT); configure_twi_pin(twi_info->pselscl, NRF_GPIO_PIN_DIR_INPUT); i2c_reset(obj); #if DEVICE_I2C_ASYNCH nrf_drv_common_per_res_acquire(m_twi_instances[i], m_twi_irq_handlers[i]); NVIC_SetVector(twi_handlers[i].IRQn, twi_handlers[i].vector); nrf_drv_common_irq_enable(twi_handlers[i].IRQn, TWI_IRQ_PRIORITY); #endif return; } } error("No available I2C peripheral\r\n"); } void i2c_reset(i2c_t *obj) { twi_info_t *twi_info = TWI_INFO(obj); NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; nrf_twi_disable(twi); nrf_twi_pins_set(twi, twi_info->pselscl, twi_info->pselsda); nrf_twi_frequency_set(twi, twi_info->frequency); nrf_twi_enable(twi); } int i2c_start(i2c_t *obj) { twi_info_t *twi_info = TWI_INFO(obj); #if DEVICE_I2C_ASYNCH if (twi_info->active) { return I2C_ERROR_BUS_BUSY; } #endif twi_info->start_twi = true; return 0; } int i2c_stop(i2c_t *obj) { NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; // The current transfer may be suspended (if it is RX), so it must be // resumed before the STOP task is triggered. nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); uint32_t remaining_time = TIMEOUT_VALUE; do { if (nrf_twi_event_check(twi, NRF_TWI_EVENT_STOPPED)) { return 0; } } while (--remaining_time); return 1; } void i2c_frequency(i2c_t *obj, int hz) { twi_info_t *twi_info = TWI_INFO(obj); NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; if (hz < 250000) { twi_info->frequency = NRF_TWI_FREQ_100K; } else if (hz < 400000) { twi_info->frequency = NRF_TWI_FREQ_250K; } else { twi_info->frequency = NRF_TWI_FREQ_400K; } nrf_twi_frequency_set(twi, twi_info->frequency); } static uint8_t twi_address(int i2c_address) { // The TWI peripheral requires 7-bit slave address (without R/W bit). return (i2c_address >> 1); } static void start_twi_read(NRF_TWI_Type *twi, int address) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_STOPPED); nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY); nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); (void)nrf_twi_errorsrc_get_and_clear(twi); nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_SUSPEND_MASK); nrf_twi_address_set(twi, twi_address(address)); nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTRX); } int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) { // Zero-length RX transfers are not supported. Such transfers cannot // be easily achieved with TWI peripheral (some dirty tricks would be // required for this), and they are actually useless (TX can be used // to check if the address is acknowledged by a slave). MBED_ASSERT(length > 0); twi_info_t *twi_info = TWI_INFO(obj); #if DEVICE_I2C_ASYNCH if (twi_info->active) { return I2C_ERROR_BUS_BUSY; } #endif twi_info->start_twi = false; NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; start_twi_read(twi, address); int result = length; while (length > 0) { int byte_read_result = i2c_byte_read(obj, (stop && length == 1)); if (byte_read_result < 0) { // When an error occurs, return the number of bytes that have been // received successfully. result -= length; // Force STOP condition. stop = 1; break; } *data++ = (uint8_t)byte_read_result; --length; } if (stop) { (void)i2c_stop(obj); } return result; } static uint8_t twi_byte_write(NRF_TWI_Type *twi, uint8_t data) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT); nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); nrf_twi_txd_set(twi, data); uint32_t remaining_time = TIMEOUT_VALUE; do { if (nrf_twi_event_check(twi, NRF_TWI_EVENT_TXDSENT)) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT); return 1; // ACK received } if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); return 0; // some error occurred } } while (--remaining_time); return 2; // timeout; } static void start_twi_write(NRF_TWI_Type *twi, int address) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_STOPPED); nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT); nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); (void)nrf_twi_errorsrc_get_and_clear(twi); nrf_twi_shorts_set(twi, 0); nrf_twi_address_set(twi, twi_address(address)); nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX); } int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) { twi_info_t *twi_info = TWI_INFO(obj); #if DEVICE_I2C_ASYNCH if (twi_info->active) { return I2C_ERROR_BUS_BUSY; } #endif twi_info->start_twi = false; NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; start_twi_write(twi, address); // Special case - transaction with no data. // It can be used to check if a slave acknowledges the address. if (length == 0) { nrf_twi_event_t event; if (stop) { event = NRF_TWI_EVENT_STOPPED; nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); } else { event = NRF_TWI_EVENT_SUSPENDED; nrf_twi_event_clear(twi, event); nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND); } uint32_t remaining_time = TIMEOUT_VALUE; do { if (nrf_twi_event_check(twi, event)) { break; } } while (--remaining_time); uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi); if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) { if (!stop) { i2c_stop(obj); } return I2C_ERROR_NO_SLAVE; } return (remaining_time ? 0 : I2C_ERROR_BUS_BUSY); } int result = length; do { uint8_t byte_write_result = twi_byte_write(twi, (uint8_t)*data++); if (byte_write_result != 1) { if (byte_write_result == 0) { // Check what kind of error has been signaled by TWI. uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi); if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) { result = I2C_ERROR_NO_SLAVE; } else { // Some other error - return the number of bytes that // have been sent successfully. result -= length; } } else { result = I2C_ERROR_BUS_BUSY; } // Force STOP condition. stop = 1; break; } --length; } while (length > 0); if (stop) { (void)i2c_stop(obj); } return result; } int i2c_byte_read(i2c_t *obj, int last) { NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; if (last) { nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK); } nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); uint32_t remaining_time = TIMEOUT_VALUE; do { if (nrf_twi_event_check(twi, NRF_TWI_EVENT_RXDREADY)) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY); return nrf_twi_rxd_get(twi); } if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) { nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); return I2C_ERROR_NO_SLAVE; } } while (--remaining_time); return I2C_ERROR_BUS_BUSY; } int i2c_byte_write(i2c_t *obj, int data) { NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; twi_info_t *twi_info = TWI_INFO(obj); if (twi_info->start_twi) { twi_info->start_twi = false; if (data & 1) { start_twi_read(twi, data); } else { start_twi_write(twi, data); } return 1; } else { nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); // 0 - TWI signaled error (NAK is the only possibility here) // 1 - ACK received // 2 - timeout (clock stretched for too long?) return twi_byte_write(twi, (uint8_t)data); } } #if DEVICE_I2C_ASYNCH void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint) { (void)hint; twi_info_t *twi_info = TWI_INFO(obj); if (twi_info->active) { return; } twi_info->active = true; twi_info->events = 0; twi_info->handler = (void (*)(void))handler; twi_info->evt_mask = event; twi_info->tx_length = tx_length; twi_info->tx = tx; twi_info->rx_length = rx_length; twi_info->rx = rx; twi_info->stop = stop; NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT); nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY); nrf_twi_event_clear(twi, NRF_TWI_EVENT_STOPPED); nrf_twi_event_clear(twi, NRF_TWI_EVENT_SUSPENDED); nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); (void)nrf_twi_errorsrc_get_and_clear(twi); nrf_twi_address_set(twi, twi_address(address)); nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); // TX only, or TX + RX (after a repeated start). if (tx_length > 0) { nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX); nrf_twi_txd_set(twi, *(twi_info->tx)); ++(twi_info->tx); // RX only. } else if (rx_length > 0) { start_asynch_rx(twi_info, twi); // Both 'tx_length' and 'rx_length' are 0 - this case may be used // to test if the slave is presentand ready for transfer (by just // sending the address and checking if it is acknowledged). } else { nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX); if (stop) { nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); } else { nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND); nrf_twi_int_enable(twi, NRF_TWI_INT_SUSPENDED_MASK); } twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE; } nrf_twi_int_enable(twi, NRF_TWI_INT_TXDSENT_MASK | NRF_TWI_INT_RXDREADY_MASK | NRF_TWI_INT_STOPPED_MASK | NRF_TWI_INT_ERROR_MASK); } uint32_t i2c_irq_handler_asynch(i2c_t *obj) { twi_info_t *twi_info = TWI_INFO(obj); return (twi_info->events & twi_info->evt_mask); } uint8_t i2c_active(i2c_t *obj) { twi_info_t *twi_info = TWI_INFO(obj); return twi_info->active; } void i2c_abort_asynch(i2c_t *obj) { i2c_reset(obj); } #endif // DEVICE_I2C_ASYNCH #endif // DEVICE_I2C