Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
Diff: cmsis/arm_math.h
- Revision:
- 167:e84263d55307
- Parent:
- 149:156823d33999
--- a/cmsis/arm_math.h Thu Jun 08 15:02:37 2017 +0100 +++ b/cmsis/arm_math.h Wed Jun 21 17:46:44 2017 +0100 @@ -1,42 +1,30 @@ /* ---------------------------------------------------------------------- -* Copyright (C) 2010-2015 ARM Limited. All rights reserved. -* -* $Date: 19. March 2015 -* $Revision: V.1.4.5 -* -* Project: CMSIS DSP Library -* Title: arm_math.h -* -* Description: Public header file for CMSIS DSP Library -* -* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 -* -* Redistribution and use in source and binary forms, with or without -* modification, are permitted provided that the following conditions -* are met: -* - Redistributions of source code must retain the above copyright -* notice, this list of conditions and the following disclaimer. -* - Redistributions in binary form must reproduce the above copyright -* notice, this list of conditions and the following disclaimer in -* the documentation and/or other materials provided with the -* distribution. -* - Neither the name of ARM LIMITED nor the names of its contributors -* may be used to endorse or promote products derived from this -* software without specific prior written permission. -* -* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, -* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT -* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN -* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -* POSSIBILITY OF SUCH DAMAGE. + * Project: CMSIS DSP Library + * Title: arm_math.h + * Description: Public header file for CMSIS DSP Library + * + * $Date: 27. January 2017 + * $Revision: V.1.5.1 + * + * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ /** \mainpage CMSIS DSP Software Library @@ -66,26 +54,34 @@ * ------------ * * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. - * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) - * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) - * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) - * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) - * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) - * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) - * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) - * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) - * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) - * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) - * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) - * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) - * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) - * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) + * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit) + * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit) + * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit) + * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on) + * - arm_cortexM7l_math.lib (Cortex-M7, Little endian) + * - arm_cortexM7b_math.lib (Cortex-M7, Big endian) + * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit) + * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit) + * - arm_cortexM4l_math.lib (Cortex-M4, Little endian) + * - arm_cortexM4b_math.lib (Cortex-M4, Big endian) + * - arm_cortexM3l_math.lib (Cortex-M3, Little endian) + * - arm_cortexM3b_math.lib (Cortex-M3, Big endian) + * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian) + * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian) + * - arm_ARMv8MBLl_math.lib (ARMv8M Baseline, Little endian) + * - arm_ARMv8MMLl_math.lib (ARMv8M Mainline, Little endian) + * - arm_ARMv8MMLlfsp_math.lib (ARMv8M Mainline, Little endian, Single Precision Floating Point Unit) + * - arm_ARMv8MMLld_math.lib (ARMv8M Mainline, Little endian, DSP instructions) + * - arm_ARMv8MMLldfsp_math.lib (ARMv8M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit) * * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single - * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. + * public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. + * For ARMv8M cores define pre processor MACRO ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML. + * Set Pre processor MACRO __DSP_PRESENT if ARMv8M Mainline core supports DSP instructions. + * * * Examples * -------- @@ -134,14 +130,23 @@ * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and * ARM_MATH_CM7 for building the library on cortex-M7. * + * - ARM_MATH_ARMV8MxL: + * + * Define macro ARM_MATH_ARMV8MBL for building the library on ARMv8M Baseline target, ARM_MATH_ARMV8MBL for building library + * on ARMv8M Mainline target. + * * - __FPU_PRESENT: * - * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries + * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries. + * + * - __DSP_PRESENT: + * + * Initialize macro __DSP_PRESENT = 1 when ARMv8M Mainline core supports DSP instructions. * * <hr> * CMSIS-DSP in ARM::CMSIS Pack * ----------------------------- - * + * * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: * |File/Folder |Content | * |------------------------------|------------------------------------------------------------------------| @@ -149,7 +154,7 @@ * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | - * + * * <hr> * Revision History of CMSIS-DSP * ------------ @@ -288,28 +293,62 @@ #ifndef _ARM_MATH_H #define _ARM_MATH_H +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __GNUC__ ) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wsign-conversion" +#pragma GCC diagnostic ignored "-Wconversion" +#pragma GCC diagnostic ignored "-Wunused-parameter" + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#else + #error Unknown compiler +#endif + + #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ #if defined(ARM_MATH_CM7) #include "core_cm7.h" + #define ARM_MATH_DSP #elif defined (ARM_MATH_CM4) #include "core_cm4.h" + #define ARM_MATH_DSP #elif defined (ARM_MATH_CM3) #include "core_cm3.h" #elif defined (ARM_MATH_CM0) #include "core_cm0.h" -#define ARM_MATH_CM0_FAMILY - #elif defined (ARM_MATH_CM0PLUS) -#include "core_cm0plus.h" + #define ARM_MATH_CM0_FAMILY +#elif defined (ARM_MATH_CM0PLUS) + #include "core_cm0plus.h" + #define ARM_MATH_CM0_FAMILY +#elif defined (ARM_MATH_ARMV8MBL) + #include "core_armv8mbl.h" #define ARM_MATH_CM0_FAMILY +#elif defined (ARM_MATH_ARMV8MML) + #include "core_armv8mml.h" + #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1)) + #define ARM_MATH_DSP + #endif #else - #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" + #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML" #endif #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ #include "string.h" #include "math.h" -#ifdef __cplusplus +#ifdef __cplusplus extern "C" { #endif @@ -319,11 +358,11 @@ * @brief Macros required for reciprocal calculation in Normalized LMS */ -#define DELTA_Q31 (0x100) -#define DELTA_Q15 0x5 -#define INDEX_MASK 0x0000003F +#define DELTA_Q31 (0x100) +#define DELTA_Q15 0x5 +#define INDEX_MASK 0x0000003F #ifndef PI -#define PI 3.14159265358979f + #define PI 3.14159265358979f #endif /** @@ -334,16 +373,15 @@ #define FAST_MATH_Q31_SHIFT (32 - 10) #define FAST_MATH_Q15_SHIFT (16 - 10) #define CONTROLLER_Q31_SHIFT (32 - 9) -#define TABLE_SIZE 256 -#define TABLE_SPACING_Q31 0x400000 -#define TABLE_SPACING_Q15 0x80 +#define TABLE_SPACING_Q31 0x400000 +#define TABLE_SPACING_Q15 0x80 /** * @brief Macros required for SINE and COSINE Controller functions */ /* 1.31(q31) Fixed value of 2/360 */ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ -#define INPUT_SPACING 0xB60B61 +#define INPUT_SPACING 0xB60B61 /** * @brief Macro for Unaligned Support @@ -356,7 +394,7 @@ #else #define ALIGN4 __align(4) #endif -#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ +#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /** * @brief Error status returned by some functions in the library. @@ -406,59 +444,78 @@ /** * @brief definition to read/write two 16 bit values. */ -#if defined __CC_ARM +#if defined ( __CC_ARM ) #define __SIMD32_TYPE int32_t __packed #define CMSIS_UNUSED __attribute__((unused)) -#elif defined __ICCARM__ + #define CMSIS_INLINE __attribute__((always_inline)) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define __SIMD32_TYPE int32_t + #define CMSIS_UNUSED __attribute__((unused)) + #define CMSIS_INLINE __attribute__((always_inline)) + +#elif defined ( __GNUC__ ) + #define __SIMD32_TYPE int32_t + #define CMSIS_UNUSED __attribute__((unused)) + #define CMSIS_INLINE __attribute__((always_inline)) + +#elif defined ( __ICCARM__ ) #define __SIMD32_TYPE int32_t __packed #define CMSIS_UNUSED -#elif defined __GNUC__ + #define CMSIS_INLINE + +#elif defined ( __TI_ARM__ ) #define __SIMD32_TYPE int32_t #define CMSIS_UNUSED __attribute__((unused)) -#elif defined __CSMC__ /* Cosmic */ + #define CMSIS_INLINE + +#elif defined ( __CSMC__ ) #define __SIMD32_TYPE int32_t #define CMSIS_UNUSED -#elif defined __TASKING__ + #define CMSIS_INLINE + +#elif defined ( __TASKING__ ) #define __SIMD32_TYPE __unaligned int32_t #define CMSIS_UNUSED + #define CMSIS_INLINE + #else #error Unknown compiler #endif -#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) +#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) - #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) - -#define __SIMD64(addr) (*(int64_t **) & (addr)) - -#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) +#define __SIMD64(addr) (*(int64_t **) & (addr)) + +/* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ +#if !defined (ARM_MATH_DSP) /** * @brief definition to pack two 16 bit values. */ -#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ - (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) -#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ - (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) - -#endif - +#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ + (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) +#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ + (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) + +/* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ +#endif /* !defined (ARM_MATH_DSP) */ /** * @brief definition to pack four 8 bit values. */ #ifndef ARM_MATH_BIG_ENDIAN -#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ - (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ - (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ - (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) +#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) #else -#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ - (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ - (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ - (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) +#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) #endif @@ -466,7 +523,7 @@ /** * @brief Clips Q63 to Q31 values. */ - static __INLINE q31_t clip_q63_to_q31( + CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31( q63_t x) { return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? @@ -476,7 +533,7 @@ /** * @brief Clips Q63 to Q15 values. */ - static __INLINE q15_t clip_q63_to_q15( + CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15( q63_t x) { return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? @@ -486,7 +543,7 @@ /** * @brief Clips Q31 to Q7 values. */ - static __INLINE q7_t clip_q31_to_q7( + CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7( q31_t x) { return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? @@ -496,7 +553,7 @@ /** * @brief Clips Q31 to Q15 values. */ - static __INLINE q15_t clip_q31_to_q15( + CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15( q31_t x) { return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? @@ -507,7 +564,7 @@ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. */ - static __INLINE q63_t mult32x64( + CMSIS_INLINE __STATIC_INLINE q63_t mult32x64( q63_t x, q31_t y) { @@ -515,64 +572,60 @@ (((q63_t) (x >> 32) * y))); } - -//#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) -//#define __CLZ __clz -//#endif - -//note: function can be removed when all toolchain support __CLZ for Cortex-M0 +/* + #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) + #define __CLZ __clz + #endif + */ +/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */ #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) - - static __INLINE uint32_t __CLZ( + CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ( q31_t data); - - static __INLINE uint32_t __CLZ( + CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ( q31_t data) { uint32_t count = 0; uint32_t mask = 0x80000000; - while((data & mask) == 0) + while ((data & mask) == 0) { count += 1u; mask = mask >> 1u; } return (count); - } - #endif /** * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. */ - static __INLINE uint32_t arm_recip_q31( + CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31( q31_t in, q31_t * dst, q31_t * pRecipTable) { - - uint32_t out, tempVal; + q31_t out; + uint32_t tempVal; uint32_t index, i; uint32_t signBits; - if(in > 0) + if (in > 0) { - signBits = __CLZ(in) - 1; + signBits = ((uint32_t) (__CLZ( in) - 1)); } else { - signBits = __CLZ(-in) - 1; + signBits = ((uint32_t) (__CLZ(-in) - 1)); } /* Convert input sample to 1.31 format */ - in = in << signBits; + in = (in << signBits); /* calculation of index for initial approximated Val */ - index = (uint32_t) (in >> 24u); + index = (uint32_t)(in >> 24); index = (index & INDEX_MASK); /* 1.31 with exp 1 */ @@ -582,11 +635,11 @@ /* running approximation for two iterations */ for (i = 0u; i < 2u; i++) { - tempVal = (q31_t) (((q63_t) in * out) >> 31u); - tempVal = 0x7FFFFFFF - tempVal; + tempVal = (uint32_t) (((q63_t) in * out) >> 31); + tempVal = 0x7FFFFFFFu - tempVal; /* 1.31 with exp 1 */ - //out = (q31_t) (((q63_t) out * tempVal) >> 30u); - out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u); + /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ + out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); } /* write output */ @@ -594,36 +647,36 @@ /* return num of signbits of out = 1/in value */ return (signBits + 1u); - } + /** * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. */ - static __INLINE uint32_t arm_recip_q15( + CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15( q15_t in, q15_t * dst, q15_t * pRecipTable) { - - uint32_t out = 0, tempVal = 0; + q15_t out = 0; + uint32_t tempVal = 0; uint32_t index = 0, i = 0; uint32_t signBits = 0; - if(in > 0) + if (in > 0) { - signBits = __CLZ(in) - 17; + signBits = ((uint32_t)(__CLZ( in) - 17)); } else { - signBits = __CLZ(-in) - 17; + signBits = ((uint32_t)(__CLZ(-in) - 17)); } /* Convert input sample to 1.15 format */ - in = in << signBits; + in = (in << signBits); /* calculation of index for initial approximated Val */ - index = in >> 8; + index = (uint32_t)(in >> 8); index = (index & INDEX_MASK); /* 1.15 with exp 1 */ @@ -631,12 +684,13 @@ /* calculation of reciprocal value */ /* running approximation for two iterations */ - for (i = 0; i < 2; i++) + for (i = 0u; i < 2u; i++) { - tempVal = (q15_t) (((q31_t) in * out) >> 15); - tempVal = 0x7FFF - tempVal; + tempVal = (uint32_t) (((q31_t) in * out) >> 15); + tempVal = 0x7FFFu - tempVal; /* 1.15 with exp 1 */ out = (q15_t) (((q31_t) out * tempVal) >> 14); + /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ } /* write output */ @@ -644,7 +698,6 @@ /* return num of signbits of out = 1/in value */ return (signBits + 1); - } @@ -652,8 +705,7 @@ * @brief C custom defined intrinisic function for only M0 processors */ #if defined(ARM_MATH_CM0_FAMILY) - - static __INLINE q31_t __SSAT( + CMSIS_INLINE __STATIC_INLINE q31_t __SSAT( q31_t x, uint32_t y) { @@ -666,11 +718,11 @@ posMax = posMax * 2; } - if(x > 0) + if (x > 0) { posMax = (posMax - 1); - if(x > posMax) + if (x > posMax) { x = posMax; } @@ -679,400 +731,377 @@ { negMin = -posMax; - if(x < negMin) + if (x < negMin) { x = negMin; } } return (x); - - } - #endif /* end of ARM_MATH_CM0_FAMILY */ - /* * @brief C custom defined intrinsic function for M3 and M0 processors */ -#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) +/* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ +#if !defined (ARM_MATH_DSP) /* * @brief C custom defined QADD8 for M3 and M0 processors */ - static __INLINE q31_t __QADD8( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8( + uint32_t x, + uint32_t y) { - - q31_t sum; - q7_t r, s, t, u; - - r = (q7_t) x; - s = (q7_t) y; - - r = __SSAT((q31_t) (r + s), 8); - s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8); - t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8); - u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8); - - sum = - (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) | - (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF); - - return sum; - + q31_t r, s, t, u; + + r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; + s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; + t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; + u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; + + return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); } + /* * @brief C custom defined QSUB8 for M3 and M0 processors */ - static __INLINE q31_t __QSUB8( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s, t, u; - r = (q7_t) x; - s = (q7_t) y; - - r = __SSAT((r - s), 8); - s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8; - t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16; - u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24; - - sum = - (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & - 0x000000FF); - - return sum; + r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; + s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; + t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; + u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; + + return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); } + /* * @brief C custom defined QADD16 for M3 and M0 processors */ - - /* - * @brief C custom defined QADD16 for M3 and M0 processors - */ - static __INLINE q31_t __QADD16( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16( + uint32_t x, + uint32_t y) { - - q31_t sum; - q31_t r, s; - - r = (q15_t) x; - s = (q15_t) y; - - r = __SSAT(r + s, 16); - s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16; - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; - +/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ + q31_t r = 0, s = 0; + + r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SHADD16 for M3 and M0 processors */ - static __INLINE q31_t __SHADD16( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = ((r >> 1) + (s >> 1)); - s = ((q31_t) ((x >> 17) + (y >> 17))) << 16; - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; - + r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined QSUB16 for M3 and M0 processors */ - static __INLINE q31_t __QSUB16( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = __SSAT(r - s, 16); - s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16; - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; + r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SHSUB16 for M3 and M0 processors */ - static __INLINE q31_t __SHSUB16( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16( + uint32_t x, + uint32_t y) { - - q31_t diff; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = ((r >> 1) - (s >> 1)); - s = (((x >> 17) - (y >> 17)) << 16); - - diff = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return diff; + r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined QASX for M3 and M0 processors */ - static __INLINE q31_t __QASX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QASX( + uint32_t x, + uint32_t y) { - - q31_t sum = 0; - - sum = - ((sum + - clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) + - clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16))); - - return sum; + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SHASX for M3 and M0 processors */ - static __INLINE q31_t __SHASX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = ((r >> 1) - (y >> 17)); - s = (((x >> 17) + (s >> 1)) << 16); - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; + r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } /* * @brief C custom defined QSAX for M3 and M0 processors */ - static __INLINE q31_t __QSAX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX( + uint32_t x, + uint32_t y) { - - q31_t sum = 0; - - sum = - ((sum + - clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) + - clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16))); - - return sum; + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SHSAX for M3 and M0 processors */ - static __INLINE q31_t __SHSAX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX( + uint32_t x, + uint32_t y) { - - q31_t sum; q31_t r, s; - r = (q15_t) x; - s = (q15_t) y; - - r = ((r >> 1) + (y >> 17)); - s = (((x >> 17) - (s >> 1)) << 16); - - sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); - - return sum; + r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); } + /* * @brief C custom defined SMUSDX for M3 and M0 processors */ - static __INLINE q31_t __SMUSDX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX( + uint32_t x, + uint32_t y) { - - return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) - - ((q15_t) (x >> 16) * (q15_t) y))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); } /* * @brief C custom defined SMUADX for M3 and M0 processors */ - static __INLINE q31_t __SMUADX( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX( + uint32_t x, + uint32_t y) { - - return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) + - ((q15_t) (x >> 16) * (q15_t) y))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); } + /* * @brief C custom defined QADD for M3 and M0 processors */ - static __INLINE q31_t __QADD( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE int32_t __QADD( + int32_t x, + int32_t y) { - return clip_q63_to_q31((q63_t) x + y); + return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); } + /* * @brief C custom defined QSUB for M3 and M0 processors */ - static __INLINE q31_t __QSUB( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE int32_t __QSUB( + int32_t x, + int32_t y) { - return clip_q63_to_q31((q63_t) x - y); + return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); } + /* * @brief C custom defined SMLAD for M3 and M0 processors */ - static __INLINE q31_t __SMLAD( - q31_t x, - q31_t y, - q31_t sum) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD( + uint32_t x, + uint32_t y, + uint32_t sum) { - - return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + - ((q15_t) x * (q15_t) y)); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + + ( ((q31_t)sum ) ) )); } + /* * @brief C custom defined SMLADX for M3 and M0 processors */ - static __INLINE q31_t __SMLADX( - q31_t x, - q31_t y, - q31_t sum) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX( + uint32_t x, + uint32_t y, + uint32_t sum) { - - return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) + - ((q15_t) x * (q15_t) (y >> 16))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q31_t)sum ) ) )); } + /* * @brief C custom defined SMLSDX for M3 and M0 processors */ - static __INLINE q31_t __SMLSDX( - q31_t x, - q31_t y, - q31_t sum) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX( + uint32_t x, + uint32_t y, + uint32_t sum) { - - return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) + - ((q15_t) x * (q15_t) (y >> 16))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q31_t)sum ) ) )); } + /* * @brief C custom defined SMLALD for M3 and M0 processors */ - static __INLINE q63_t __SMLALD( - q31_t x, - q31_t y, - q63_t sum) + CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD( + uint32_t x, + uint32_t y, + uint64_t sum) { - - return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + - ((q15_t) x * (q15_t) y)); +/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ + return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + + ( ((q63_t)sum ) ) )); } + /* * @brief C custom defined SMLALDX for M3 and M0 processors */ - static __INLINE q63_t __SMLALDX( - q31_t x, - q31_t y, - q63_t sum) + CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX( + uint32_t x, + uint32_t y, + uint64_t sum) { - - return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + - ((q15_t) x * (q15_t) (y >> 16)); +/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ + return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q63_t)sum ) ) )); } + /* * @brief C custom defined SMUAD for M3 and M0 processors */ - static __INLINE q31_t __SMUAD( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD( + uint32_t x, + uint32_t y) { - - return (((x >> 16) * (y >> 16)) + - (((x << 16) >> 16) * ((y << 16) >> 16))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); } + /* * @brief C custom defined SMUSD for M3 and M0 processors */ - static __INLINE q31_t __SMUSD( - q31_t x, - q31_t y) + CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD( + uint32_t x, + uint32_t y) { - - return (-((x >> 16) * (y >> 16)) + - (((x << 16) >> 16) * ((y << 16) >> 16))); + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); } /* * @brief C custom defined SXTB16 for M3 and M0 processors */ - static __INLINE q31_t __SXTB16( - q31_t x) + CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16( + uint32_t x) + { + return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | + ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); + } + + /* + * @brief C custom defined SMMLA for M3 and M0 processors + */ + CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA( + int32_t x, + int32_t y, + int32_t sum) { - - return ((((x << 24) >> 24) & 0x0000FFFF) | - (((x << 8) >> 8) & 0xFFFF0000)); + return (sum + (int32_t) (((int64_t) x * y) >> 32)); + } + +#if 0 + /* + * @brief C custom defined PKHBT for unavailable DSP extension + */ + CMSIS_INLINE __STATIC_INLINE uint32_t __PKHBT( + uint32_t x, + uint32_t y, + uint32_t leftshift) + { + return ( ((x ) & 0x0000FFFFUL) | + ((y << leftshift) & 0xFFFF0000UL) ); } - -#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ + /* + * @brief C custom defined PKHTB for unavailable DSP extension + */ + CMSIS_INLINE __STATIC_INLINE uint32_t __PKHTB( + uint32_t x, + uint32_t y, + uint32_t rightshift) + { + return ( ((x ) & 0xFFFF0000UL) | + ((y >> rightshift) & 0x0000FFFFUL) ); + } +#endif + +/* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ +#endif /* !defined (ARM_MATH_DSP) */ /** @@ -1118,11 +1147,10 @@ /** * @brief Processing function for the Q7 FIR filter. - * @param[in] *S points to an instance of the Q7 FIR filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q7 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_q7( const arm_fir_instance_q7 * S, @@ -1133,12 +1161,11 @@ /** * @brief Initialization function for the Q7 FIR filter. - * @param[in,out] *S points to an instance of the Q7 FIR structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of samples that are processed. - * @return none + * @param[in,out] S points to an instance of the Q7 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed. */ void arm_fir_init_q7( arm_fir_instance_q7 * S, @@ -1150,11 +1177,10 @@ /** * @brief Processing function for the Q15 FIR filter. - * @param[in] *S points to an instance of the Q15 FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q15 FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_q15( const arm_fir_instance_q15 * S, @@ -1162,13 +1188,13 @@ q15_t * pDst, uint32_t blockSize); + /** * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q15 FIR filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q15 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_fast_q15( const arm_fir_instance_q15 * S, @@ -1176,17 +1202,17 @@ q15_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q15 FIR filter. - * @param[in,out] *S points to an instance of the Q15 FIR filter structure. - * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. + * @param[in,out] S points to an instance of the Q15 FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if * <code>numTaps</code> is not a supported value. */ - arm_status arm_fir_init_q15( arm_fir_instance_q15 * S, uint16_t numTaps, @@ -1194,13 +1220,13 @@ q15_t * pState, uint32_t blockSize); + /** * @brief Processing function for the Q31 FIR filter. - * @param[in] *S points to an instance of the Q31 FIR filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q31 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_q31( const arm_fir_instance_q31 * S, @@ -1208,13 +1234,13 @@ q31_t * pDst, uint32_t blockSize); + /** * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q31 FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q31 FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_fast_q31( const arm_fir_instance_q31 * S, @@ -1222,14 +1248,14 @@ q31_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q31 FIR filter. - * @param[in,out] *S points to an instance of the Q31 FIR structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. - * @return none. + * @param[in,out] S points to an instance of the Q31 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. */ void arm_fir_init_q31( arm_fir_instance_q31 * S, @@ -1238,13 +1264,13 @@ q31_t * pState, uint32_t blockSize); + /** * @brief Processing function for the floating-point FIR filter. - * @param[in] *S points to an instance of the floating-point FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the floating-point FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_f32( const arm_fir_instance_f32 * S, @@ -1252,14 +1278,14 @@ float32_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point FIR filter. - * @param[in,out] *S points to an instance of the floating-point FIR filter structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. - * @return none. + * @param[in,out] S points to an instance of the floating-point FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. */ void arm_fir_init_f32( arm_fir_instance_f32 * S, @@ -1274,14 +1300,12 @@ */ typedef struct { - int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ - q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ - int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ - + int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ } arm_biquad_casd_df1_inst_q15; - /** * @brief Instance structure for the Q31 Biquad cascade filter. */ @@ -1291,7 +1315,6 @@ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ - } arm_biquad_casd_df1_inst_q31; /** @@ -1299,40 +1322,34 @@ */ typedef struct { - uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ - float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ - - + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_casd_df1_inst_f32; - /** * @brief Processing function for the Q15 Biquad cascade filter. - * @param[in] *S points to an instance of the Q15 Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_df1_q15( const arm_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q15 Biquad cascade filter. - * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format - * @return none - */ - + * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + */ void arm_biquad_cascade_df1_init_q15( arm_biquad_casd_df1_inst_q15 * S, uint8_t numStages, @@ -1343,13 +1360,11 @@ /** * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q15 Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_df1_fast_q15( const arm_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, @@ -1359,44 +1374,40 @@ /** * @brief Processing function for the Q31 Biquad cascade filter - * @param[in] *S points to an instance of the Q31 Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. + * @param[in] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. - * @return none. - */ - + */ void arm_biquad_cascade_df1_q31( const arm_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q31 Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. + * @param[in] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. - * @return none. - */ - + */ void arm_biquad_cascade_df1_fast_q31( const arm_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q31 Biquad cascade filter. - * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format - * @return none - */ - + * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + */ void arm_biquad_cascade_df1_init_q31( arm_biquad_casd_df1_inst_q31 * S, uint8_t numStages, @@ -1404,30 +1415,28 @@ q31_t * pState, int8_t postShift); + /** * @brief Processing function for the floating-point Biquad cascade filter. - * @param[in] *S points to an instance of the floating-point Biquad cascade structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. + * @param[in] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. * @param[in] blockSize number of samples to process. - * @return none. - */ - + */ void arm_biquad_cascade_df1_f32( const arm_biquad_casd_df1_inst_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point Biquad cascade filter. - * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @return none - */ - + * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ void arm_biquad_cascade_df1_init_f32( arm_biquad_casd_df1_inst_f32 * S, uint8_t numStages, @@ -1438,7 +1447,6 @@ /** * @brief Instance structure for the floating-point matrix structure. */ - typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ @@ -1450,7 +1458,6 @@ /** * @brief Instance structure for the floating-point matrix structure. */ - typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ @@ -1461,109 +1468,103 @@ /** * @brief Instance structure for the Q15 matrix structure. */ - typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ q15_t *pData; /**< points to the data of the matrix. */ - } arm_matrix_instance_q15; /** * @brief Instance structure for the Q31 matrix structure. */ - typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ q31_t *pData; /**< points to the data of the matrix. */ - } arm_matrix_instance_q31; - /** * @brief Floating-point matrix addition. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_add_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); + /** * @brief Q15 matrix addition. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_add_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst); + /** * @brief Q31 matrix addition. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_add_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); + /** * @brief Floating-point, complex, matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_cmplx_mult_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); + /** * @brief Q15, complex, matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_cmplx_mult_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pScratch); + /** * @brief Q31, complex, matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_cmplx_mult_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, @@ -1572,12 +1573,11 @@ /** * @brief Floating-point matrix transpose. - * @param[in] *pSrc points to the input matrix - * @param[out] *pDst points to the output matrix - * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_trans_f32( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst); @@ -1585,24 +1585,23 @@ /** * @brief Q15 matrix transpose. - * @param[in] *pSrc points to the input matrix - * @param[out] *pDst points to the output matrix - * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_trans_q15( const arm_matrix_instance_q15 * pSrc, arm_matrix_instance_q15 * pDst); + /** * @brief Q31 matrix transpose. - * @param[in] *pSrc points to the input matrix - * @param[out] *pDst points to the output matrix - * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_trans_q31( const arm_matrix_instance_q31 * pSrc, arm_matrix_instance_q31 * pDst); @@ -1610,73 +1609,72 @@ /** * @brief Floating-point matrix multiplication - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); + /** * @brief Q15 matrix multiplication - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure - * @param[in] *pState points to the array for storing intermediate results + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pState); + /** * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure - * @param[in] *pState points to the array for storing intermediate results + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_fast_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pState); + /** * @brief Q31 matrix multiplication - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); + /** * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_mult_fast_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, @@ -1685,86 +1683,85 @@ /** * @brief Floating-point matrix subtraction - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_sub_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst); + /** * @brief Q15 matrix subtraction - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_sub_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst); + /** * @brief Q31 matrix subtraction - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_sub_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst); + /** * @brief Floating-point matrix scaling. - * @param[in] *pSrc points to the input matrix - * @param[in] scale scale factor - * @param[out] *pDst points to the output matrix + * @param[in] pSrc points to the input matrix + * @param[in] scale scale factor + * @param[out] pDst points to the output matrix * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_scale_f32( const arm_matrix_instance_f32 * pSrc, float32_t scale, arm_matrix_instance_f32 * pDst); + /** * @brief Q15 matrix scaling. - * @param[in] *pSrc points to input matrix - * @param[in] scaleFract fractional portion of the scale factor - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to output matrix + * @param[in] pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to output matrix * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_scale_q15( const arm_matrix_instance_q15 * pSrc, q15_t scaleFract, int32_t shift, arm_matrix_instance_q15 * pDst); + /** * @brief Q31 matrix scaling. - * @param[in] *pSrc points to input matrix - * @param[in] scaleFract fractional portion of the scale factor - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to output matrix structure + * @param[in] pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ - arm_status arm_mat_scale_q31( const arm_matrix_instance_q31 * pSrc, q31_t scaleFract, @@ -1774,43 +1771,39 @@ /** * @brief Q31 matrix initialization. - * @param[in,out] *S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] *pData points to the matrix data array. - * @return none - */ - + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ void arm_mat_init_q31( arm_matrix_instance_q31 * S, uint16_t nRows, uint16_t nColumns, q31_t * pData); + /** * @brief Q15 matrix initialization. - * @param[in,out] *S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] *pData points to the matrix data array. - * @return none - */ - + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ void arm_mat_init_q15( arm_matrix_instance_q15 * S, uint16_t nRows, uint16_t nColumns, q15_t * pData); + /** * @brief Floating-point matrix initialization. - * @param[in,out] *S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] *pData points to the matrix data array. - * @return none - */ - + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ void arm_mat_init_f32( arm_matrix_instance_f32 * S, uint16_t nRows, @@ -1824,14 +1817,14 @@ */ typedef struct { - q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ -#ifdef ARM_MATH_CM0_FAMILY + q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ +#if !defined (ARM_MATH_DSP) q15_t A1; q15_t A2; #else q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ #endif - q15_t state[3]; /**< The state array of length 3. */ + q15_t state[3]; /**< The state array of length 3. */ q15_t Kp; /**< The proportional gain. */ q15_t Ki; /**< The integral gain. */ q15_t Kd; /**< The derivative gain. */ @@ -1849,7 +1842,6 @@ q31_t Kp; /**< The proportional gain. */ q31_t Ki; /**< The integral gain. */ q31_t Kd; /**< The derivative gain. */ - } arm_pid_instance_q31; /** @@ -1861,27 +1853,26 @@ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ float32_t A2; /**< The derived gain, A2 = Kd . */ float32_t state[3]; /**< The state array of length 3. */ - float32_t Kp; /**< The proportional gain. */ - float32_t Ki; /**< The integral gain. */ - float32_t Kd; /**< The derivative gain. */ + float32_t Kp; /**< The proportional gain. */ + float32_t Ki; /**< The integral gain. */ + float32_t Kd; /**< The derivative gain. */ } arm_pid_instance_f32; /** * @brief Initialization function for the floating-point PID Control. - * @param[in,out] *S points to an instance of the PID structure. + * @param[in,out] S points to an instance of the PID structure. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - * @return none. */ void arm_pid_init_f32( arm_pid_instance_f32 * S, int32_t resetStateFlag); + /** * @brief Reset function for the floating-point PID Control. - * @param[in,out] *S is an instance of the floating-point PID Control structure - * @return none + * @param[in,out] S is an instance of the floating-point PID Control structure */ void arm_pid_reset_f32( arm_pid_instance_f32 * S); @@ -1889,9 +1880,8 @@ /** * @brief Initialization function for the Q31 PID Control. - * @param[in,out] *S points to an instance of the Q15 PID structure. + * @param[in,out] S points to an instance of the Q15 PID structure. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - * @return none. */ void arm_pid_init_q31( arm_pid_instance_q31 * S, @@ -1900,27 +1890,26 @@ /** * @brief Reset function for the Q31 PID Control. - * @param[in,out] *S points to an instance of the Q31 PID Control structure - * @return none + * @param[in,out] S points to an instance of the Q31 PID Control structure */ void arm_pid_reset_q31( arm_pid_instance_q31 * S); + /** * @brief Initialization function for the Q15 PID Control. - * @param[in,out] *S points to an instance of the Q15 PID structure. - * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - * @return none. + * @param[in,out] S points to an instance of the Q15 PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. */ void arm_pid_init_q15( arm_pid_instance_q15 * S, int32_t resetStateFlag); + /** * @brief Reset function for the Q15 PID Control. - * @param[in,out] *S points to an instance of the q15 PID Control structure - * @return none + * @param[in,out] S points to an instance of the q15 PID Control structure */ void arm_pid_reset_q15( arm_pid_instance_q15 * S); @@ -1940,7 +1929,6 @@ /** * @brief Instance structure for the floating-point bilinear interpolation function. */ - typedef struct { uint16_t numRows; /**< number of rows in the data table. */ @@ -1951,7 +1939,6 @@ /** * @brief Instance structure for the Q31 bilinear interpolation function. */ - typedef struct { uint16_t numRows; /**< number of rows in the data table. */ @@ -1962,7 +1949,6 @@ /** * @brief Instance structure for the Q15 bilinear interpolation function. */ - typedef struct { uint16_t numRows; /**< number of rows in the data table. */ @@ -1973,69 +1959,63 @@ /** * @brief Instance structure for the Q15 bilinear interpolation function. */ - typedef struct { uint16_t numRows; /**< number of rows in the data table. */ uint16_t numCols; /**< number of columns in the data table. */ - q7_t *pData; /**< points to the data table. */ + q7_t *pData; /**< points to the data table. */ } arm_bilinear_interp_instance_q7; /** * @brief Q7 vector multiplication. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_mult_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); + /** * @brief Q15 vector multiplication. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_mult_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); + /** * @brief Q31 vector multiplication. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_mult_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); + /** * @brief Floating-point vector multiplication. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_mult_f32( float32_t * pSrcA, float32_t * pSrcB, @@ -2043,20 +2023,15 @@ uint32_t blockSize); - - - - /** * @brief Instance structure for the Q15 CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ + q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ @@ -2075,11 +2050,9 @@ q15_t * pSrc); - /** * @brief Instance structure for the Q15 CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2106,13 +2079,12 @@ /** * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - q31_t *pTwiddle; /**< points to the Twiddle factor table. */ + q31_t *pTwiddle; /**< points to the Twiddle factor table. */ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ @@ -2133,7 +2105,6 @@ /** * @brief Instance structure for the Q31 CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2160,7 +2131,6 @@ /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2170,7 +2140,7 @@ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - float32_t onebyfftLen; /**< value of 1/fftLen. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ } arm_cfft_radix2_instance_f32; /* Deprecated */ @@ -2188,7 +2158,6 @@ /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2198,7 +2167,7 @@ uint16_t *pBitRevTable; /**< points to the bit reversal table. */ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - float32_t onebyfftLen; /**< value of 1/fftLen. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ } arm_cfft_radix4_instance_f32; /* Deprecated */ @@ -2216,7 +2185,6 @@ /** * @brief Instance structure for the fixed-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2225,16 +2193,15 @@ uint16_t bitRevLength; /**< bit reversal table length. */ } arm_cfft_instance_q15; -void arm_cfft_q15( - const arm_cfft_instance_q15 * S, +void arm_cfft_q15( + const arm_cfft_instance_q15 * S, q15_t * p1, uint8_t ifftFlag, - uint8_t bitReverseFlag); + uint8_t bitReverseFlag); /** * @brief Instance structure for the fixed-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2243,16 +2210,15 @@ uint16_t bitRevLength; /**< bit reversal table length. */ } arm_cfft_instance_q31; -void arm_cfft_q31( - const arm_cfft_instance_q31 * S, +void arm_cfft_q31( + const arm_cfft_instance_q31 * S, q31_t * p1, uint8_t ifftFlag, - uint8_t bitReverseFlag); - + uint8_t bitReverseFlag); + /** * @brief Instance structure for the floating-point CFFT/CIFFT function. */ - typedef struct { uint16_t fftLen; /**< length of the FFT. */ @@ -2270,7 +2236,6 @@ /** * @brief Instance structure for the Q15 RFFT/RIFFT function. */ - typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ @@ -2296,7 +2261,6 @@ /** * @brief Instance structure for the Q31 RFFT/RIFFT function. */ - typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ @@ -2322,7 +2286,6 @@ /** * @brief Instance structure for the floating-point RFFT/RIFFT function. */ - typedef struct { uint32_t fftLenReal; /**< length of the real FFT. */ @@ -2350,17 +2313,16 @@ /** * @brief Instance structure for the floating-point RFFT/RIFFT function. */ - typedef struct { arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ - uint16_t fftLenRFFT; /**< length of the real sequence */ - float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ + uint16_t fftLenRFFT; /**< length of the real sequence */ + float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ } arm_rfft_fast_instance_f32 ; arm_status arm_rfft_fast_init_f32 ( - arm_rfft_fast_instance_f32 * S, - uint16_t fftLen); + arm_rfft_fast_instance_f32 * S, + uint16_t fftLen); void arm_rfft_fast_f32( arm_rfft_fast_instance_f32 * S, @@ -2370,29 +2332,28 @@ /** * @brief Instance structure for the floating-point DCT4/IDCT4 function. */ - typedef struct { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - float32_t normalize; /**< normalizing factor. */ - float32_t *pTwiddle; /**< points to the twiddle factor table. */ - float32_t *pCosFactor; /**< points to the cosFactor table. */ + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + float32_t normalize; /**< normalizing factor. */ + float32_t *pTwiddle; /**< points to the twiddle factor table. */ + float32_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_f32; + /** * @brief Initialization function for the floating-point DCT4/IDCT4. - * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure. - * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure. - * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure. + * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. + * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. - * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. - */ - + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. + */ arm_status arm_dct4_init_f32( arm_dct4_instance_f32 * S, arm_rfft_instance_f32 * S_RFFT, @@ -2401,45 +2362,44 @@ uint16_t Nby2, float32_t normalize); + /** * @brief Processing function for the floating-point DCT4/IDCT4. - * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. - * @param[in] *pState points to state buffer. - * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ void arm_dct4_f32( const arm_dct4_instance_f32 * S, float32_t * pState, float32_t * pInlineBuffer); + /** * @brief Instance structure for the Q31 DCT4/IDCT4 function. */ - typedef struct { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - q31_t normalize; /**< normalizing factor. */ - q31_t *pTwiddle; /**< points to the twiddle factor table. */ - q31_t *pCosFactor; /**< points to the cosFactor table. */ + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q31_t normalize; /**< normalizing factor. */ + q31_t *pTwiddle; /**< points to the twiddle factor table. */ + q31_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_q31; + /** * @brief Initialization function for the Q31 DCT4/IDCT4. - * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure. - * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure - * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure + * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure + * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. - * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. - */ - + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. + */ arm_status arm_dct4_init_q31( arm_dct4_instance_q31 * S, arm_rfft_instance_q31 * S_RFFT, @@ -2448,45 +2408,44 @@ uint16_t Nby2, q31_t normalize); + /** * @brief Processing function for the Q31 DCT4/IDCT4. - * @param[in] *S points to an instance of the Q31 DCT4 structure. - * @param[in] *pState points to state buffer. - * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 DCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ void arm_dct4_q31( const arm_dct4_instance_q31 * S, q31_t * pState, q31_t * pInlineBuffer); + /** * @brief Instance structure for the Q15 DCT4/IDCT4 function. */ - typedef struct { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - q15_t normalize; /**< normalizing factor. */ - q15_t *pTwiddle; /**< points to the twiddle factor table. */ - q15_t *pCosFactor; /**< points to the cosFactor table. */ + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q15_t normalize; /**< normalizing factor. */ + q15_t *pTwiddle; /**< points to the twiddle factor table. */ + q15_t *pCosFactor; /**< points to the cosFactor table. */ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ } arm_dct4_instance_q15; + /** * @brief Initialization function for the Q15 DCT4/IDCT4. - * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure. - * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure. - * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure. + * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. + * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. * @param[in] N length of the DCT4. * @param[in] Nby2 half of the length of the DCT4. * @param[in] normalize normalizing factor. - * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. - */ - + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. + */ arm_status arm_dct4_init_q15( arm_dct4_instance_q15 * S, arm_rfft_instance_q15 * S_RFFT, @@ -2495,164 +2454,153 @@ uint16_t Nby2, q15_t normalize); + /** * @brief Processing function for the Q15 DCT4/IDCT4. - * @param[in] *S points to an instance of the Q15 DCT4 structure. - * @param[in] *pState points to state buffer. - * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 DCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ void arm_dct4_q15( const arm_dct4_instance_q15 * S, q15_t * pState, q15_t * pInlineBuffer); + /** * @brief Floating-point vector addition. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_add_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); + /** * @brief Q7 vector addition. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_add_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); + /** * @brief Q15 vector addition. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_add_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); + /** * @brief Q31 vector addition. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_add_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); + /** * @brief Floating-point vector subtraction. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_sub_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t blockSize); + /** * @brief Q7 vector subtraction. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_sub_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize); + /** * @brief Q15 vector subtraction. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_sub_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize); + /** * @brief Q31 vector subtraction. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ void arm_sub_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize); + /** * @brief Multiplies a floating-point vector by a scalar. - * @param[in] *pSrc points to the input vector - * @param[in] scale scale factor to be applied - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] scale scale factor to be applied + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_scale_f32( float32_t * pSrc, float32_t scale, float32_t * pDst, uint32_t blockSize); + /** * @brief Multiplies a Q7 vector by a scalar. - * @param[in] *pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_scale_q7( q7_t * pSrc, q7_t scaleFract, @@ -2660,16 +2608,15 @@ q7_t * pDst, uint32_t blockSize); + /** * @brief Multiplies a Q15 vector by a scalar. - * @param[in] *pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_scale_q15( q15_t * pSrc, q15_t scaleFract, @@ -2677,16 +2624,15 @@ q15_t * pDst, uint32_t blockSize); + /** * @brief Multiplies a Q31 vector by a scalar. - * @param[in] *pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_scale_q31( q31_t * pSrc, q31_t scaleFract, @@ -2694,379 +2640,361 @@ q31_t * pDst, uint32_t blockSize); + /** * @brief Q7 vector absolute value. - * @param[in] *pSrc points to the input buffer - * @param[out] *pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ void arm_abs_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); + /** * @brief Floating-point vector absolute value. - * @param[in] *pSrc points to the input buffer - * @param[out] *pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ void arm_abs_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Q15 vector absolute value. - * @param[in] *pSrc points to the input buffer - * @param[out] *pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ void arm_abs_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Q31 vector absolute value. - * @param[in] *pSrc points to the input buffer - * @param[out] *pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ void arm_abs_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Dot product of floating-point vectors. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] *result output result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ void arm_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, uint32_t blockSize, float32_t * result); + /** * @brief Dot product of Q7 vectors. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] *result output result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ void arm_dot_prod_q7( q7_t * pSrcA, q7_t * pSrcB, uint32_t blockSize, q31_t * result); + /** * @brief Dot product of Q15 vectors. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] *result output result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ void arm_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, uint32_t blockSize, q63_t * result); + /** * @brief Dot product of Q31 vectors. - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] *result output result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ void arm_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, uint32_t blockSize, q63_t * result); + /** * @brief Shifts the elements of a Q7 vector a specified number of bits. - * @param[in] *pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_shift_q7( q7_t * pSrc, int8_t shiftBits, q7_t * pDst, uint32_t blockSize); + /** * @brief Shifts the elements of a Q15 vector a specified number of bits. - * @param[in] *pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_shift_q15( q15_t * pSrc, int8_t shiftBits, q15_t * pDst, uint32_t blockSize); + /** * @brief Shifts the elements of a Q31 vector a specified number of bits. - * @param[in] *pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_shift_q31( q31_t * pSrc, int8_t shiftBits, q31_t * pDst, uint32_t blockSize); + /** * @brief Adds a constant offset to a floating-point vector. - * @param[in] *pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_offset_f32( float32_t * pSrc, float32_t offset, float32_t * pDst, uint32_t blockSize); + /** * @brief Adds a constant offset to a Q7 vector. - * @param[in] *pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_offset_q7( q7_t * pSrc, q7_t offset, q7_t * pDst, uint32_t blockSize); + /** * @brief Adds a constant offset to a Q15 vector. - * @param[in] *pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_offset_q15( q15_t * pSrc, q15_t offset, q15_t * pDst, uint32_t blockSize); + /** * @brief Adds a constant offset to a Q31 vector. - * @param[in] *pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_offset_q31( q31_t * pSrc, q31_t offset, q31_t * pDst, uint32_t blockSize); + /** * @brief Negates the elements of a floating-point vector. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_negate_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Negates the elements of a Q7 vector. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_negate_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); + /** * @brief Negates the elements of a Q15 vector. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_negate_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Negates the elements of a Q31 vector. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] blockSize number of samples in the vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ void arm_negate_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + + /** * @brief Copies the elements of a floating-point vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_copy_f32( float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Copies the elements of a Q7 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_copy_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize); + /** * @brief Copies the elements of a Q15 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_copy_q15( q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Copies the elements of a Q31 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_copy_q31( q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + + /** * @brief Fills a constant value into a floating-point vector. - * @param[in] value input value to be filled - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_fill_f32( float32_t value, float32_t * pDst, uint32_t blockSize); + /** * @brief Fills a constant value into a Q7 vector. - * @param[in] value input value to be filled - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_fill_q7( q7_t value, q7_t * pDst, uint32_t blockSize); + /** * @brief Fills a constant value into a Q15 vector. - * @param[in] value input value to be filled - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_fill_q15( q15_t value, q15_t * pDst, uint32_t blockSize); + /** * @brief Fills a constant value into a Q31 vector. - * @param[in] value input value to be filled - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_fill_q31( q31_t value, q31_t * pDst, uint32_t blockSize); + /** * @brief Convolution of floating-point sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. */ - void arm_conv_f32( float32_t * pSrcA, uint32_t srcALen, @@ -3077,17 +3005,14 @@ /** * @brief Convolution of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). - * @return none. - */ - - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + */ void arm_conv_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3100,14 +3025,12 @@ /** * @brief Convolution of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. */ - void arm_conv_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3115,35 +3038,33 @@ uint32_t srcBLen, q15_t * pDst); - /** - * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @return none. - */ - - void arm_conv_fast_q15( - q15_t * pSrcA, - uint32_t srcALen, - q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst); /** * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_fast_q15( + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + + /** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + */ void arm_conv_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3154,17 +3075,14 @@ q15_t * pScratch2); - /** * @brief Convolution of Q31 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ void arm_conv_q31( q31_t * pSrcA, uint32_t srcALen, @@ -3172,16 +3090,15 @@ uint32_t srcBLen, q31_t * pDst); + /** * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ void arm_conv_fast_q31( q31_t * pSrcA, uint32_t srcALen, @@ -3192,16 +3109,14 @@ /** * @brief Convolution of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + */ void arm_conv_opt_q7( q7_t * pSrcA, uint32_t srcALen, @@ -3212,17 +3127,14 @@ q15_t * pScratch2); - /** * @brief Convolution of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ void arm_conv_q7( q7_t * pSrcA, uint32_t srcALen, @@ -3233,16 +3145,15 @@ /** * @brief Partial convolution of floating-point sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_f32( float32_t * pSrcA, uint32_t srcALen, @@ -3252,20 +3163,20 @@ uint32_t firstIndex, uint32_t numPoints); - /** + + /** * @brief Partial convolution of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3278,18 +3189,17 @@ q15_t * pScratch2); -/** + /** * @brief Partial convolution of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3299,42 +3209,41 @@ uint32_t firstIndex, uint32_t numPoints); + /** * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_fast_q15( - q15_t * pSrcA, - uint32_t srcALen, - q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - uint32_t firstIndex, - uint32_t numPoints); + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); /** * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -3349,16 +3258,15 @@ /** * @brief Partial convolution of Q31 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_q31( q31_t * pSrcA, uint32_t srcALen, @@ -3371,16 +3279,15 @@ /** * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_fast_q31( q31_t * pSrcA, uint32_t srcALen, @@ -3393,18 +3300,17 @@ /** * @brief Partial convolution of Q7 sequences - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_opt_q7( q7_t * pSrcA, uint32_t srcALen, @@ -3419,16 +3325,15 @@ /** * @brief Partial convolution of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. */ - arm_status arm_conv_partial_q7( q7_t * pSrcA, uint32_t srcALen, @@ -3439,56 +3344,47 @@ uint32_t numPoints); - /** * @brief Instance structure for the Q15 FIR decimator. */ - typedef struct { - uint8_t M; /**< decimation factor. */ - uint16_t numTaps; /**< number of coefficients in the filter. */ - q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_q15; /** * @brief Instance structure for the Q31 FIR decimator. */ - typedef struct { uint8_t M; /**< decimation factor. */ uint16_t numTaps; /**< number of coefficients in the filter. */ - q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_q31; /** * @brief Instance structure for the floating-point FIR decimator. */ - typedef struct { - uint8_t M; /**< decimation factor. */ - uint16_t numTaps; /**< number of coefficients in the filter. */ - float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ } arm_fir_decimate_instance_f32; - /** * @brief Processing function for the floating-point FIR decimator. - * @param[in] *S points to an instance of the floating-point FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + * @param[in] S points to an instance of the floating-point FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_decimate_f32( const arm_fir_decimate_instance_f32 * S, float32_t * pSrc, @@ -3498,16 +3394,15 @@ /** * @brief Initialization function for the floating-point FIR decimator. - * @param[in,out] *S points to an instance of the floating-point FIR decimator structure. - * @param[in] numTaps number of coefficients in the filter. - * @param[in] M decimation factor. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the floating-point FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ - arm_status arm_fir_decimate_init_f32( arm_fir_decimate_instance_f32 * S, uint16_t numTaps, @@ -3516,30 +3411,28 @@ float32_t * pState, uint32_t blockSize); + /** * @brief Processing function for the Q15 FIR decimator. - * @param[in] *S points to an instance of the Q15 FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + * @param[in] S points to an instance of the Q15 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_decimate_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q15 FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + * @param[in] S points to an instance of the Q15 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_decimate_fast_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, @@ -3547,19 +3440,17 @@ uint32_t blockSize); - /** * @brief Initialization function for the Q15 FIR decimator. - * @param[in,out] *S points to an instance of the Q15 FIR decimator structure. - * @param[in] numTaps number of coefficients in the filter. - * @param[in] M decimation factor. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the Q15 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ - arm_status arm_fir_decimate_init_q15( arm_fir_decimate_instance_q15 * S, uint16_t numTaps, @@ -3568,15 +3459,14 @@ q15_t * pState, uint32_t blockSize); + /** * @brief Processing function for the Q31 FIR decimator. - * @param[in] *S points to an instance of the Q31 FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data + * @param[in] S points to an instance of the Q31 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + */ void arm_fir_decimate_q31( const arm_fir_decimate_instance_q31 * S, q31_t * pSrc, @@ -3585,13 +3475,11 @@ /** * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. - * @param[in] *S points to an instance of the Q31 FIR decimator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - * @return none - */ - + * @param[in] S points to an instance of the Q31 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_decimate_fast_q31( arm_fir_decimate_instance_q31 * S, q31_t * pSrc, @@ -3601,16 +3489,15 @@ /** * @brief Initialization function for the Q31 FIR decimator. - * @param[in,out] *S points to an instance of the Q31 FIR decimator structure. - * @param[in] numTaps number of coefficients in the filter. - * @param[in] M decimation factor. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the Q31 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * <code>blockSize</code> is not a multiple of <code>M</code>. */ - arm_status arm_fir_decimate_init_q31( arm_fir_decimate_instance_q31 * S, uint16_t numTaps, @@ -3620,11 +3507,9 @@ uint32_t blockSize); - /** * @brief Instance structure for the Q15 FIR interpolator. */ - typedef struct { uint8_t L; /**< upsample factor. */ @@ -3636,37 +3521,33 @@ /** * @brief Instance structure for the Q31 FIR interpolator. */ - typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ - q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ - q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ } arm_fir_interpolate_instance_q31; /** * @brief Instance structure for the floating-point FIR interpolator. */ - typedef struct { uint8_t L; /**< upsample factor. */ uint16_t phaseLength; /**< length of each polyphase filter component. */ - float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ - float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ } arm_fir_interpolate_instance_f32; /** * @brief Processing function for the Q15 FIR interpolator. - * @param[in] *S points to an instance of the Q15 FIR interpolator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_interpolate_q15( const arm_fir_interpolate_instance_q15 * S, q15_t * pSrc, @@ -3676,16 +3557,15 @@ /** * @brief Initialization function for the Q15 FIR interpolator. - * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficient buffer. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ - arm_status arm_fir_interpolate_init_q15( arm_fir_interpolate_instance_q15 * S, uint8_t L, @@ -3694,33 +3574,32 @@ q15_t * pState, uint32_t blockSize); + /** * @brief Processing function for the Q31 FIR interpolator. - * @param[in] *S points to an instance of the Q15 FIR interpolator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_interpolate_q31( const arm_fir_interpolate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q31 FIR interpolator. - * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficient buffer. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ - arm_status arm_fir_interpolate_init_q31( arm_fir_interpolate_instance_q31 * S, uint8_t L, @@ -3732,31 +3611,29 @@ /** * @brief Processing function for the floating-point FIR interpolator. - * @param[in] *S points to an instance of the floating-point FIR interpolator structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ void arm_fir_interpolate_f32( const arm_fir_interpolate_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point FIR interpolator. - * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] *pCoeffs points to the filter coefficient buffer. - * @param[in] *pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. + * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. */ - arm_status arm_fir_interpolate_init_f32( arm_fir_interpolate_instance_f32 * S, uint8_t L, @@ -3765,28 +3642,25 @@ float32_t * pState, uint32_t blockSize); + /** * @brief Instance structure for the high precision Q31 Biquad cascade filter. */ - typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ - } arm_biquad_cas_df1_32x64_ins_q31; /** - * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cas_df1_32x64_q31( const arm_biquad_cas_df1_32x64_ins_q31 * S, q31_t * pSrc, @@ -3795,14 +3669,12 @@ /** - * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format - * @return none - */ - + * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format + */ void arm_biquad_cas_df1_32x64_init_q31( arm_biquad_cas_df1_32x64_ins_q31 * S, uint8_t numStages, @@ -3811,11 +3683,9 @@ uint8_t postShift); - /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ - typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ @@ -3823,12 +3693,9 @@ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_cascade_df2T_instance_f32; - - /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ - typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ @@ -3836,12 +3703,9 @@ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ } arm_biquad_cascade_stereo_df2T_instance_f32; - - /** * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. */ - typedef struct { uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ @@ -3852,13 +3716,11 @@ /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in] *S points to an instance of the filter data structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_df2T_f32( const arm_biquad_cascade_df2T_instance_f32 * S, float32_t * pSrc, @@ -3868,28 +3730,25 @@ /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels - * @param[in] *S points to an instance of the filter data structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_stereo_df2T_f32( const arm_biquad_cascade_stereo_df2T_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in] *S points to an instance of the filter data structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_biquad_cascade_df2T_f64( const arm_biquad_cascade_df2T_instance_f64 * S, float64_t * pSrc, @@ -3899,13 +3758,11 @@ /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] *S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @return none - */ - + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ void arm_biquad_cascade_df2T_init_f32( arm_biquad_cascade_df2T_instance_f32 * S, uint8_t numStages, @@ -3915,13 +3772,11 @@ /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] *S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @return none - */ - + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ void arm_biquad_cascade_stereo_df2T_init_f32( arm_biquad_cascade_stereo_df2T_instance_f32 * S, uint8_t numStages, @@ -3931,13 +3786,11 @@ /** * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] *S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] *pCoeffs points to the filter coefficients. - * @param[in] *pState points to the state buffer. - * @return none - */ - + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ void arm_biquad_cascade_df2T_init_f64( arm_biquad_cascade_df2T_instance_f64 * S, uint8_t numStages, @@ -3945,33 +3798,29 @@ float64_t * pState); - /** * @brief Instance structure for the Q15 FIR lattice filter. */ - typedef struct { - uint16_t numStages; /**< number of filter stages. */ - q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ - q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + uint16_t numStages; /**< number of filter stages. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_q15; /** * @brief Instance structure for the Q31 FIR lattice filter. */ - typedef struct { - uint16_t numStages; /**< number of filter stages. */ - q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ - q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + uint16_t numStages; /**< number of filter stages. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_q31; /** * @brief Instance structure for the floating-point FIR lattice filter. */ - typedef struct { uint16_t numStages; /**< number of filter stages. */ @@ -3979,15 +3828,14 @@ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ } arm_fir_lattice_instance_f32; + /** * @brief Initialization function for the Q15 FIR lattice filter. - * @param[in] *S points to an instance of the Q15 FIR lattice structure. + * @param[in] S points to an instance of the Q15 FIR lattice structure. * @param[in] numStages number of filter stages. - * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] *pState points to the state buffer. The array is of length numStages. - * @return none. - */ - + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ void arm_fir_lattice_init_q15( arm_fir_lattice_instance_q15 * S, uint16_t numStages, @@ -3997,11 +3845,10 @@ /** * @brief Processing function for the Q15 FIR lattice filter. - * @param[in] *S points to an instance of the Q15 FIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. + * @param[in] S points to an instance of the Q15 FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. */ void arm_fir_lattice_q15( const arm_fir_lattice_instance_q15 * S, @@ -4009,15 +3856,14 @@ q15_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the Q31 FIR lattice filter. - * @param[in] *S points to an instance of the Q31 FIR lattice structure. + * @param[in] S points to an instance of the Q31 FIR lattice structure. * @param[in] numStages number of filter stages. - * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] *pState points to the state buffer. The array is of length numStages. - * @return none. - */ - + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ void arm_fir_lattice_init_q31( arm_fir_lattice_instance_q31 * S, uint16_t numStages, @@ -4027,58 +3873,55 @@ /** * @brief Processing function for the Q31 FIR lattice filter. - * @param[in] *S points to an instance of the Q31 FIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_fir_lattice_q31( const arm_fir_lattice_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point FIR lattice filter. - * @param[in] *S points to an instance of the floating-point FIR lattice structure. + * @param[in] S points to an instance of the floating-point FIR lattice structure. * @param[in] numStages number of filter stages. - * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] *pState points to the state buffer. The array is of length numStages. - * @return none. + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. */ - void arm_fir_lattice_init_f32( arm_fir_lattice_instance_f32 * S, uint16_t numStages, float32_t * pCoeffs, float32_t * pState); + /** * @brief Processing function for the floating-point FIR lattice filter. - * @param[in] *S points to an instance of the floating-point FIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ void arm_fir_lattice_f32( const arm_fir_lattice_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Instance structure for the Q15 IIR lattice filter. */ typedef struct { - uint16_t numStages; /**< number of stages in the filter. */ - q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + uint16_t numStages; /**< number of stages in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_q15; /** @@ -4086,10 +3929,10 @@ */ typedef struct { - uint16_t numStages; /**< number of stages in the filter. */ - q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + uint16_t numStages; /**< number of stages in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_q31; /** @@ -4097,38 +3940,36 @@ */ typedef struct { - uint16_t numStages; /**< number of stages in the filter. */ - float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + uint16_t numStages; /**< number of stages in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ } arm_iir_lattice_instance_f32; + /** * @brief Processing function for the floating-point IIR lattice filter. - * @param[in] *S points to an instance of the floating-point IIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_f32( const arm_iir_lattice_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); + /** * @brief Initialization function for the floating-point IIR lattice filter. - * @param[in] *S points to an instance of the floating-point IIR lattice structure. - * @param[in] numStages number of stages in the filter. - * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. - * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. - * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_init_f32( arm_iir_lattice_instance_f32 * S, uint16_t numStages, @@ -4140,13 +3981,11 @@ /** * @brief Processing function for the Q31 IIR lattice filter. - * @param[in] *S points to an instance of the Q31 IIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_q31( const arm_iir_lattice_instance_q31 * S, q31_t * pSrc, @@ -4156,15 +3995,13 @@ /** * @brief Initialization function for the Q31 IIR lattice filter. - * @param[in] *S points to an instance of the Q31 IIR lattice structure. - * @param[in] numStages number of stages in the filter. - * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. - * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. - * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_init_q31( arm_iir_lattice_instance_q31 * S, uint16_t numStages, @@ -4176,13 +4013,11 @@ /** * @brief Processing function for the Q15 IIR lattice filter. - * @param[in] *S points to an instance of the Q15 IIR lattice structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ void arm_iir_lattice_q15( const arm_iir_lattice_instance_q15 * S, q15_t * pSrc, @@ -4192,15 +4027,13 @@ /** * @brief Initialization function for the Q15 IIR lattice filter. - * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure. + * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. * @param[in] numStages number of stages in the filter. - * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages. - * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. - * @param[in] *pState points to state buffer. The array is of length numStages+blockSize. - * @param[in] blockSize number of samples to process per call. - * @return none. + * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process per call. */ - void arm_iir_lattice_init_q15( arm_iir_lattice_instance_q15 * S, uint16_t numStages, @@ -4209,10 +4042,10 @@ q15_t * pState, uint32_t blockSize); + /** * @brief Instance structure for the floating-point LMS filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4221,17 +4054,16 @@ float32_t mu; /**< step size that controls filter coefficient updates. */ } arm_lms_instance_f32; + /** * @brief Processing function for floating-point LMS filter. - * @param[in] *S points to an instance of the floating-point LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_f32( const arm_lms_instance_f32 * S, float32_t * pSrc, @@ -4240,17 +4072,16 @@ float32_t * pErr, uint32_t blockSize); + /** * @brief Initialization function for floating-point LMS filter. - * @param[in] *S points to an instance of the floating-point LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to the coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to the coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + */ void arm_lms_init_f32( arm_lms_instance_f32 * S, uint16_t numTaps, @@ -4259,10 +4090,10 @@ float32_t mu, uint32_t blockSize); + /** * @brief Instance structure for the Q15 LMS filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4275,16 +4106,14 @@ /** * @brief Initialization function for the Q15 LMS filter. - * @param[in] *S points to an instance of the Q15 LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to the coefficient buffer. - * @param[in] *pState points to the state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to the coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ void arm_lms_init_q15( arm_lms_instance_q15 * S, uint16_t numTaps, @@ -4294,17 +4123,16 @@ uint32_t blockSize, uint32_t postShift); + /** * @brief Processing function for Q15 LMS filter. - * @param[in] *S points to an instance of the Q15 LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_q15( const arm_lms_instance_q15 * S, q15_t * pSrc, @@ -4317,7 +4145,6 @@ /** * @brief Instance structure for the Q31 LMS filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4325,20 +4152,18 @@ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ q31_t mu; /**< step size that controls filter coefficient updates. */ uint32_t postShift; /**< bit shift applied to coefficients. */ - } arm_lms_instance_q31; + /** * @brief Processing function for Q31 LMS filter. - * @param[in] *S points to an instance of the Q15 LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_q31( const arm_lms_instance_q31 * S, q31_t * pSrc, @@ -4347,18 +4172,17 @@ q31_t * pErr, uint32_t blockSize); + /** * @brief Initialization function for Q31 LMS filter. - * @param[in] *S points to an instance of the Q31 LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ void arm_lms_init_q31( arm_lms_instance_q31 * S, uint16_t numTaps, @@ -4368,31 +4192,30 @@ uint32_t blockSize, uint32_t postShift); + /** * @brief Instance structure for the floating-point normalized LMS filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - float32_t mu; /**< step size that control filter coefficient updates. */ - float32_t energy; /**< saves previous frame energy. */ - float32_t x0; /**< saves previous input sample. */ + float32_t mu; /**< step size that control filter coefficient updates. */ + float32_t energy; /**< saves previous frame energy. */ + float32_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_f32; + /** * @brief Processing function for floating-point normalized LMS filter. - * @param[in] *S points to an instance of the floating-point normalized LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_norm_f32( arm_lms_norm_instance_f32 * S, float32_t * pSrc, @@ -4401,17 +4224,16 @@ float32_t * pErr, uint32_t blockSize); + /** * @brief Initialization function for floating-point normalized LMS filter. - * @param[in] *S points to an instance of the floating-point LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + */ void arm_lms_norm_init_f32( arm_lms_norm_instance_f32 * S, uint16_t numTaps, @@ -4436,17 +4258,16 @@ q31_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_q31; + /** * @brief Processing function for Q31 normalized LMS filter. - * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_norm_q31( arm_lms_norm_instance_q31 * S, q31_t * pSrc, @@ -4455,18 +4276,17 @@ q31_t * pErr, uint32_t blockSize); + /** * @brief Initialization function for Q31 normalized LMS filter. - * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - * @return none. - */ - + * @param[in] S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ void arm_lms_norm_init_q31( arm_lms_norm_instance_q31 * S, uint16_t numTaps, @@ -4476,33 +4296,32 @@ uint32_t blockSize, uint8_t postShift); + /** * @brief Instance structure for the Q15 normalized LMS filter. */ - typedef struct { - uint16_t numTaps; /**< Number of coefficients in the filter. */ + uint16_t numTaps; /**< Number of coefficients in the filter. */ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - q15_t mu; /**< step size that controls filter coefficient updates. */ - uint8_t postShift; /**< bit shift applied to coefficients. */ - q15_t *recipTable; /**< Points to the reciprocal initial value table. */ - q15_t energy; /**< saves previous frame energy. */ - q15_t x0; /**< saves previous input sample. */ + q15_t mu; /**< step size that controls filter coefficient updates. */ + uint8_t postShift; /**< bit shift applied to coefficients. */ + q15_t *recipTable; /**< Points to the reciprocal initial value table. */ + q15_t energy; /**< saves previous frame energy. */ + q15_t x0; /**< saves previous input sample. */ } arm_lms_norm_instance_q15; + /** * @brief Processing function for Q15 normalized LMS filter. - * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. - * @param[in] *pSrc points to the block of input data. - * @param[in] *pRef points to the block of reference data. - * @param[out] *pOut points to the block of output data. - * @param[out] *pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ void arm_lms_norm_q15( arm_lms_norm_instance_q15 * S, q15_t * pSrc, @@ -4514,16 +4333,14 @@ /** * @brief Initialization function for Q15 normalized LMS filter. - * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] *pCoeffs points to coefficient buffer. - * @param[in] *pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - * @return none. - */ - + * @param[in] S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ void arm_lms_norm_init_q15( arm_lms_norm_instance_q15 * S, uint16_t numTaps, @@ -4533,16 +4350,15 @@ uint32_t blockSize, uint8_t postShift); + /** * @brief Correlation of floating-point sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ void arm_correlate_f32( float32_t * pSrcA, uint32_t srcALen, @@ -4553,13 +4369,12 @@ /** * @brief Correlation of Q15 sequences - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. */ void arm_correlate_opt_q15( q15_t * pSrcA, @@ -4572,12 +4387,11 @@ /** * @brief Correlation of Q15 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_q15( @@ -4587,36 +4401,33 @@ uint32_t srcBLen, q15_t * pDst); + /** * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. */ void arm_correlate_fast_q15( - q15_t * pSrcA, - uint32_t srcALen, - q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst); - + q15_t * pSrcA, + uint32_t srcALen, + q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); /** * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + */ void arm_correlate_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, @@ -4625,16 +4436,15 @@ q15_t * pDst, q15_t * pScratch); + /** * @brief Correlation of Q31 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ void arm_correlate_q31( q31_t * pSrcA, uint32_t srcALen, @@ -4642,16 +4452,15 @@ uint32_t srcBLen, q31_t * pDst); + /** * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ void arm_correlate_fast_q31( q31_t * pSrcA, uint32_t srcALen, @@ -4660,19 +4469,16 @@ q31_t * pDst); - /** * @brief Correlation of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + */ void arm_correlate_opt_q7( q7_t * pSrcA, uint32_t srcALen, @@ -4685,14 +4491,12 @@ /** * @brief Correlation of Q7 sequences. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @return none. - */ - + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ void arm_correlate_q7( q7_t * pSrcA, uint32_t srcALen, @@ -4717,7 +4521,6 @@ /** * @brief Instance structure for the Q31 sparse FIR filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4731,7 +4534,6 @@ /** * @brief Instance structure for the Q15 sparse FIR filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4745,7 +4547,6 @@ /** * @brief Instance structure for the Q7 sparse FIR filter. */ - typedef struct { uint16_t numTaps; /**< number of coefficients in the filter. */ @@ -4756,16 +4557,15 @@ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ } arm_fir_sparse_instance_q7; + /** * @brief Processing function for the floating-point sparse FIR filter. - * @param[in] *S points to an instance of the floating-point sparse FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] *pScratchIn points to a temporary buffer of size blockSize. + * @param[in] S points to an instance of the floating-point sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + */ void arm_fir_sparse_f32( arm_fir_sparse_instance_f32 * S, float32_t * pSrc, @@ -4773,18 +4573,17 @@ float32_t * pScratchIn, uint32_t blockSize); + /** * @brief Initialization function for the floating-point sparse FIR filter. - * @param[in,out] *S points to an instance of the floating-point sparse FIR structure. + * @param[in,out] S points to an instance of the floating-point sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] *pCoeffs points to the array of filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] *pTapDelay points to the array of offset times. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. - * @return none - */ - + */ void arm_fir_sparse_init_f32( arm_fir_sparse_instance_f32 * S, uint16_t numTaps, @@ -4794,16 +4593,15 @@ uint16_t maxDelay, uint32_t blockSize); + /** * @brief Processing function for the Q31 sparse FIR filter. - * @param[in] *S points to an instance of the Q31 sparse FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] *pScratchIn points to a temporary buffer of size blockSize. + * @param[in] S points to an instance of the Q31 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + */ void arm_fir_sparse_q31( arm_fir_sparse_instance_q31 * S, q31_t * pSrc, @@ -4811,18 +4609,17 @@ q31_t * pScratchIn, uint32_t blockSize); + /** * @brief Initialization function for the Q31 sparse FIR filter. - * @param[in,out] *S points to an instance of the Q31 sparse FIR structure. + * @param[in,out] S points to an instance of the Q31 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] *pCoeffs points to the array of filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] *pTapDelay points to the array of offset times. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. - * @return none - */ - + */ void arm_fir_sparse_init_q31( arm_fir_sparse_instance_q31 * S, uint16_t numTaps, @@ -4832,17 +4629,16 @@ uint16_t maxDelay, uint32_t blockSize); + /** * @brief Processing function for the Q15 sparse FIR filter. - * @param[in] *S points to an instance of the Q15 sparse FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] *pScratchIn points to a temporary buffer of size blockSize. - * @param[in] *pScratchOut points to a temporary buffer of size blockSize. + * @param[in] S points to an instance of the Q15 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] pScratchOut points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + */ void arm_fir_sparse_q15( arm_fir_sparse_instance_q15 * S, q15_t * pSrc, @@ -4854,16 +4650,14 @@ /** * @brief Initialization function for the Q15 sparse FIR filter. - * @param[in,out] *S points to an instance of the Q15 sparse FIR structure. + * @param[in,out] S points to an instance of the Q15 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] *pCoeffs points to the array of filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] *pTapDelay points to the array of offset times. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. - * @return none - */ - + */ void arm_fir_sparse_init_q15( arm_fir_sparse_instance_q15 * S, uint16_t numTaps, @@ -4873,17 +4667,16 @@ uint16_t maxDelay, uint32_t blockSize); + /** * @brief Processing function for the Q7 sparse FIR filter. - * @param[in] *S points to an instance of the Q7 sparse FIR structure. - * @param[in] *pSrc points to the block of input data. - * @param[out] *pDst points to the block of output data - * @param[in] *pScratchIn points to a temporary buffer of size blockSize. - * @param[in] *pScratchOut points to a temporary buffer of size blockSize. + * @param[in] S points to an instance of the Q7 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] pScratchOut points to a temporary buffer of size blockSize. * @param[in] blockSize number of input samples to process per call. - * @return none. - */ - + */ void arm_fir_sparse_q7( arm_fir_sparse_instance_q7 * S, q7_t * pSrc, @@ -4892,18 +4685,17 @@ q31_t * pScratchOut, uint32_t blockSize); + /** * @brief Initialization function for the Q7 sparse FIR filter. - * @param[in,out] *S points to an instance of the Q7 sparse FIR structure. + * @param[in,out] S points to an instance of the Q7 sparse FIR structure. * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] *pCoeffs points to the array of filter coefficients. - * @param[in] *pState points to the state buffer. - * @param[in] *pTapDelay points to the array of offset times. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. * @param[in] maxDelay maximum offset time supported. * @param[in] blockSize number of samples that will be processed per block. - * @return none - */ - + */ void arm_fir_sparse_init_q7( arm_fir_sparse_instance_q7 * S, uint16_t numTaps, @@ -4914,27 +4706,24 @@ uint32_t blockSize); - /* + /** * @brief Floating-point sin_cos function. - * @param[in] theta input value in degrees - * @param[out] *pSinVal points to the processed sine output. - * @param[out] *pCosVal points to the processed cos output. - * @return none. - */ - + * @param[in] theta input value in degrees + * @param[out] pSinVal points to the processed sine output. + * @param[out] pCosVal points to the processed cos output. + */ void arm_sin_cos_f32( float32_t theta, float32_t * pSinVal, - float32_t * pCcosVal); - - /* + float32_t * pCosVal); + + + /** * @brief Q31 sin_cos function. * @param[in] theta scaled input value in degrees - * @param[out] *pSinVal points to the processed sine output. - * @param[out] *pCosVal points to the processed cosine output. - * @return none. - */ - + * @param[out] pSinVal points to the processed sine output. + * @param[out] pCosVal points to the processed cosine output. + */ void arm_sin_cos_q31( q31_t theta, q31_t * pSinVal, @@ -4943,12 +4732,10 @@ /** * @brief Floating-point complex conjugate. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_conj_f32( float32_t * pSrc, float32_t * pDst, @@ -4956,66 +4743,58 @@ /** * @brief Q31 complex conjugate. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_conj_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); + /** * @brief Q15 complex conjugate. - * @param[in] *pSrc points to the input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_conj_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); - /** * @brief Floating-point complex magnitude squared - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_squared_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); + /** * @brief Q31 complex magnitude squared - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_squared_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); + /** * @brief Q15 complex magnitude squared - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_squared_q15( q15_t * pSrc, q15_t * pDst, @@ -5090,13 +4869,11 @@ /** * @brief Process function for the floating-point PID Control. - * @param[in,out] *S is an instance of the floating-point PID Control structure - * @param[in] in input sample to process + * @param[in,out] S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process * @return out processed output sample. */ - - - static __INLINE float32_t arm_pid_f32( + CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32( arm_pid_instance_f32 * S, float32_t in) { @@ -5118,8 +4895,8 @@ /** * @brief Process function for the Q31 PID Control. - * @param[in,out] *S points to an instance of the Q31 PID Control structure - * @param[in] in input sample to process + * @param[in,out] S points to an instance of the Q31 PID Control structure + * @param[in] in input sample to process * @return out processed output sample. * * <b>Scaling and Overflow Behavior:</b> @@ -5130,8 +4907,7 @@ * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. */ - - static __INLINE q31_t arm_pid_q31( + CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31( arm_pid_instance_q31 * S, q31_t in) { @@ -5160,13 +4936,13 @@ /* return to application */ return (out); - } + /** * @brief Process function for the Q15 PID Control. - * @param[in,out] *S points to an instance of the Q15 PID Control structure - * @param[in] in input sample to process + * @param[in,out] S points to an instance of the Q15 PID Control structure + * @param[in] in input sample to process * @return out processed output sample. * * <b>Scaling and Overflow Behavior:</b> @@ -5178,26 +4954,24 @@ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. * Lastly, the accumulator is saturated to yield a result in 1.15 format. */ - - static __INLINE q15_t arm_pid_q15( + CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15( arm_pid_instance_q15 * S, q15_t in) { q63_t acc; q15_t out; -#ifndef ARM_MATH_CM0_FAMILY +#if defined (ARM_MATH_DSP) __SIMD32_TYPE *vstate; /* Implementation of PID controller */ /* acc = A0 * x[n] */ - acc = (q31_t) __SMUAD(S->A0, in); + acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); /* acc += A1 * x[n-1] + A2 * x[n-2] */ vstate = __SIMD32_CONST(S->state); - acc = __SMLALD(S->A1, (q31_t) *vstate, acc); - + acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); #else /* acc = A0 * x[n] */ acc = ((q31_t) S->A0) * in; @@ -5205,7 +4979,6 @@ /* acc += A1 * x[n-1] + A2 * x[n-2] */ acc += (q31_t) S->A1 * S->state[0]; acc += (q31_t) S->A2 * S->state[1]; - #endif /* acc += y[n-1] */ @@ -5221,7 +4994,6 @@ /* return to application */ return (out); - } /** @@ -5231,12 +5003,11 @@ /** * @brief Floating-point matrix inverse. - * @param[in] *src points to the instance of the input floating-point matrix structure. - * @param[out] *dst points to the instance of the output floating-point matrix structure. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. */ - arm_status arm_mat_inverse_f32( const arm_matrix_instance_f32 * src, arm_matrix_instance_f32 * dst); @@ -5244,12 +5015,11 @@ /** * @brief Floating-point matrix inverse. - * @param[in] *src points to the instance of the input floating-point matrix structure. - * @param[out] *dst points to the instance of the output floating-point matrix structure. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. */ - arm_status arm_mat_inverse_f64( const arm_matrix_instance_f64 * src, arm_matrix_instance_f64 * dst); @@ -5260,7 +5030,6 @@ * @ingroup groupController */ - /** * @defgroup clarke Vector Clarke Transform * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. @@ -5291,14 +5060,12 @@ /** * * @brief Floating-point Clarke transform - * @param[in] Ia input three-phase coordinate <code>a</code> - * @param[in] Ib input three-phase coordinate <code>b</code> - * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta - * @return none. - */ - - static __INLINE void arm_clarke_f32( + * @param[in] Ia input three-phase coordinate <code>a</code> + * @param[in] Ib input three-phase coordinate <code>b</code> + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + */ + CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32( float32_t Ia, float32_t Ib, float32_t * pIalpha, @@ -5308,18 +5075,16 @@ *pIalpha = Ia; /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ - *pIbeta = - ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); - + *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); } + /** * @brief Clarke transform for Q31 version - * @param[in] Ia input three-phase coordinate <code>a</code> - * @param[in] Ib input three-phase coordinate <code>b</code> - * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta - * @return none. + * @param[in] Ia input three-phase coordinate <code>a</code> + * @param[in] Ib input three-phase coordinate <code>b</code> + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta * * <b>Scaling and Overflow Behavior:</b> * \par @@ -5327,8 +5092,7 @@ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition, hence there is no risk of overflow. */ - - static __INLINE void arm_clarke_q31( + CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31( q31_t Ia, q31_t Ib, q31_t * pIalpha, @@ -5355,10 +5119,9 @@ /** * @brief Converts the elements of the Q7 vector to Q31 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_q7_to_q31( q7_t * pSrc, @@ -5367,7 +5130,6 @@ - /** * @ingroup groupController */ @@ -5395,15 +5157,12 @@ /** * @brief Floating-point Inverse Clarke transform - * @param[in] Ialpha input two-phase orthogonal vector axis alpha - * @param[in] Ibeta input two-phase orthogonal vector axis beta - * @param[out] *pIa points to output three-phase coordinate <code>a</code> - * @param[out] *pIb points to output three-phase coordinate <code>b</code> - * @return none. - */ - - - static __INLINE void arm_inv_clarke_f32( + * @param[in] Ialpha input two-phase orthogonal vector axis alpha + * @param[in] Ibeta input two-phase orthogonal vector axis beta + * @param[out] pIa points to output three-phase coordinate <code>a</code> + * @param[out] pIb points to output three-phase coordinate <code>b</code> + */ + CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32( float32_t Ialpha, float32_t Ibeta, float32_t * pIa, @@ -5413,17 +5172,16 @@ *pIa = Ialpha; /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ - *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta; - + *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; } + /** * @brief Inverse Clarke transform for Q31 version - * @param[in] Ialpha input two-phase orthogonal vector axis alpha - * @param[in] Ibeta input two-phase orthogonal vector axis beta - * @param[out] *pIa points to output three-phase coordinate <code>a</code> - * @param[out] *pIb points to output three-phase coordinate <code>b</code> - * @return none. + * @param[in] Ialpha input two-phase orthogonal vector axis alpha + * @param[in] Ibeta input two-phase orthogonal vector axis beta + * @param[out] pIa points to output three-phase coordinate <code>a</code> + * @param[out] pIb points to output three-phase coordinate <code>b</code> * * <b>Scaling and Overflow Behavior:</b> * \par @@ -5431,8 +5189,7 @@ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the subtraction, hence there is no risk of overflow. */ - - static __INLINE void arm_inv_clarke_q31( + CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31( q31_t Ialpha, q31_t Ibeta, q31_t * pIa, @@ -5451,7 +5208,6 @@ /* pIb is calculated by subtracting the products */ *pIb = __QSUB(product2, product1); - } /** @@ -5460,10 +5216,9 @@ /** * @brief Converts the elements of the Q7 vector to Q15 vector. - * @param[in] *pSrc input pointer - * @param[out] *pDst output pointer - * @param[in] blockSize number of samples to process - * @return none. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process */ void arm_q7_to_q15( q7_t * pSrc, @@ -5507,19 +5262,17 @@ /** * @brief Floating-point Park transform - * @param[in] Ialpha input two-phase vector coordinate alpha - * @param[in] Ibeta input two-phase vector coordinate beta - * @param[out] *pId points to output rotor reference frame d - * @param[out] *pIq points to output rotor reference frame q - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none. + * @param[in] Ialpha input two-phase vector coordinate alpha + * @param[in] Ibeta input two-phase vector coordinate beta + * @param[out] pId points to output rotor reference frame d + * @param[out] pIq points to output rotor reference frame q + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta * * The function implements the forward Park transform. * */ - - static __INLINE void arm_park_f32( + CMSIS_INLINE __STATIC_INLINE void arm_park_f32( float32_t Ialpha, float32_t Ibeta, float32_t * pId, @@ -5532,18 +5285,17 @@ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ *pIq = -Ialpha * sinVal + Ibeta * cosVal; - } + /** * @brief Park transform for Q31 version - * @param[in] Ialpha input two-phase vector coordinate alpha - * @param[in] Ibeta input two-phase vector coordinate beta - * @param[out] *pId points to output rotor reference frame d - * @param[out] *pIq points to output rotor reference frame q - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none. + * @param[in] Ialpha input two-phase vector coordinate alpha + * @param[in] Ibeta input two-phase vector coordinate beta + * @param[out] pId points to output rotor reference frame d + * @param[out] pIq points to output rotor reference frame q + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta * * <b>Scaling and Overflow Behavior:</b> * \par @@ -5551,9 +5303,7 @@ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition and subtraction, hence there is no risk of overflow. */ - - - static __INLINE void arm_park_q31( + CMSIS_INLINE __STATIC_INLINE void arm_park_q31( q31_t Ialpha, q31_t Ibeta, q31_t * pId, @@ -5590,10 +5340,9 @@ /** * @brief Converts the elements of the Q7 vector to floating-point vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q7_to_float( q7_t * pSrc, @@ -5629,16 +5378,14 @@ /** * @brief Floating-point Inverse Park transform - * @param[in] Id input coordinate of rotor reference frame d - * @param[in] Iq input coordinate of rotor reference frame q - * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none. - */ - - static __INLINE void arm_inv_park_f32( + * @param[in] Id input coordinate of rotor reference frame d + * @param[in] Iq input coordinate of rotor reference frame q + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + */ + CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32( float32_t Id, float32_t Iq, float32_t * pIalpha, @@ -5651,19 +5398,17 @@ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ *pIbeta = Id * sinVal + Iq * cosVal; - } /** - * @brief Inverse Park transform for Q31 version - * @param[in] Id input coordinate of rotor reference frame d - * @param[in] Iq input coordinate of rotor reference frame q - * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none. + * @brief Inverse Park transform for Q31 version + * @param[in] Id input coordinate of rotor reference frame d + * @param[in] Iq input coordinate of rotor reference frame q + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta * * <b>Scaling and Overflow Behavior:</b> * \par @@ -5671,9 +5416,7 @@ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. * There is saturation on the addition, hence there is no risk of overflow. */ - - - static __INLINE void arm_inv_park_q31( + CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31( q31_t Id, q31_t Iq, q31_t * pIalpha, @@ -5702,7 +5445,6 @@ /* Calculate pIbeta by using the two intermediate products 3 and 4 */ *pIbeta = __QADD(product4, product3); - } /** @@ -5712,10 +5454,9 @@ /** * @brief Converts the elements of the Q31 vector to floating-point vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q31_to_float( q31_t * pSrc, @@ -5765,17 +5506,15 @@ /** * @brief Process function for the floating-point Linear Interpolation Function. - * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure - * @param[in] x input sample to process + * @param[in,out] S is an instance of the floating-point Linear Interpolation structure + * @param[in] x input sample to process * @return y processed output sample. * */ - - static __INLINE float32_t arm_linear_interp_f32( + CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32( arm_linear_interp_instance_f32 * S, float32_t x) { - float32_t y; float32_t x0, x1; /* Nearest input values */ float32_t y0, y1; /* Nearest output values */ @@ -5786,12 +5525,12 @@ /* Calculation of index */ i = (int32_t) ((x - S->x1) / xSpacing); - if(i < 0) + if (i < 0) { /* Iniatilize output for below specified range as least output value of table */ y = pYData[0]; } - else if((uint32_t)i >= S->nValues) + else if ((uint32_t)i >= S->nValues) { /* Iniatilize output for above specified range as last output value of table */ y = pYData[S->nValues - 1]; @@ -5799,7 +5538,7 @@ else { /* Calculation of nearest input values */ - x0 = S->x1 + i * xSpacing; + x0 = S->x1 + i * xSpacing; x1 = S->x1 + (i + 1) * xSpacing; /* Read of nearest output values */ @@ -5815,12 +5554,13 @@ return (y); } + /** * * @brief Process function for the Q31 Linear Interpolation Function. - * @param[in] *pYData pointer to Q31 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values + * @param[in] pYData pointer to Q31 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values * @return y processed output sample. * * \par @@ -5828,9 +5568,7 @@ * This function can support maximum of table size 2^12. * */ - - - static __INLINE q31_t arm_linear_interp_q31( + CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31( q31_t * pYData, q31_t x, uint32_t nValues) @@ -5843,26 +5581,25 @@ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - index = ((x & 0xFFF00000) >> 20); - - if(index >= (int32_t)(nValues - 1)) + index = ((x & (q31_t)0xFFF00000) >> 20); + + if (index >= (int32_t)(nValues - 1)) { return (pYData[nValues - 1]); } - else if(index < 0) + else if (index < 0) { return (pYData[0]); } else { - /* 20 bits for the fractional part */ /* shift left by 11 to keep fract in 1.31 format */ fract = (x & 0x000FFFFF) << 11; /* Read two nearest output values from the index in 1.31(q31) format */ y0 = pYData[index]; - y1 = pYData[index + 1u]; + y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract) and y is in 2.30 format */ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); @@ -5872,17 +5609,16 @@ /* Convert y to 1.31 format */ return (y << 1u); - } - } + /** * * @brief Process function for the Q15 Linear Interpolation Function. - * @param[in] *pYData pointer to Q15 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values + * @param[in] pYData pointer to Q15 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values * @return y processed output sample. * * \par @@ -5890,9 +5626,7 @@ * This function can support maximum of table size 2^12. * */ - - - static __INLINE q15_t arm_linear_interp_q15( + CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15( q15_t * pYData, q31_t x, uint32_t nValues) @@ -5905,13 +5639,13 @@ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - index = ((x & 0xFFF00000) >> 20u); - - if(index >= (int32_t)(nValues - 1)) + index = ((x & (int32_t)0xFFF00000) >> 20); + + if (index >= (int32_t)(nValues - 1)) { return (pYData[nValues - 1]); } - else if(index < 0) + else if (index < 0) { return (pYData[0]); } @@ -5923,7 +5657,7 @@ /* Read two nearest output values from the index */ y0 = pYData[index]; - y1 = pYData[index + 1u]; + y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract) and y is in 13.35 format */ y = ((q63_t) y0 * (0xFFFFF - fract)); @@ -5932,27 +5666,24 @@ y += ((q63_t) y1 * (fract)); /* convert y to 1.15 format */ - return (y >> 20); + return (q15_t) (y >> 20); } - - } + /** * * @brief Process function for the Q7 Linear Interpolation Function. - * @param[in] *pYData pointer to Q7 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values + * @param[in] pYData pointer to Q7 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values * @return y processed output sample. * * \par * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. * This function can support maximum of table size 2^12. */ - - - static __INLINE q7_t arm_linear_interp_q7( + CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7( q7_t * pYData, q31_t x, uint32_t nValues) @@ -5971,21 +5702,19 @@ } index = (x >> 20) & 0xfff; - - if(index >= (nValues - 1)) + if (index >= (nValues - 1)) { return (pYData[nValues - 1]); } else { - /* 20 bits for the fractional part */ /* fract is in 12.20 format */ fract = (x & 0x000FFFFF); /* Read two nearest output values from the index and are in 1.7(q7) format */ y0 = pYData[index]; - y1 = pYData[index + 1u]; + y1 = pYData[index + 1]; /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ y = ((y0 * (0xFFFFF - fract))); @@ -5994,66 +5723,64 @@ y += (y1 * fract); /* convert y to 1.7(q7) format */ - return (y >> 20u); - - } - + return (q7_t) (y >> 20); + } } + /** * @} end of LinearInterpolate group */ /** * @brief Fast approximation to the trigonometric sine function for floating-point data. - * @param[in] x input value in radians. + * @param[in] x input value in radians. * @return sin(x). */ - float32_t arm_sin_f32( float32_t x); + /** * @brief Fast approximation to the trigonometric sine function for Q31 data. - * @param[in] x Scaled input value in radians. + * @param[in] x Scaled input value in radians. * @return sin(x). */ - q31_t arm_sin_q31( q31_t x); + /** * @brief Fast approximation to the trigonometric sine function for Q15 data. - * @param[in] x Scaled input value in radians. + * @param[in] x Scaled input value in radians. * @return sin(x). */ - q15_t arm_sin_q15( q15_t x); + /** * @brief Fast approximation to the trigonometric cosine function for floating-point data. - * @param[in] x input value in radians. + * @param[in] x input value in radians. * @return cos(x). */ - float32_t arm_cos_f32( float32_t x); + /** * @brief Fast approximation to the trigonometric cosine function for Q31 data. - * @param[in] x Scaled input value in radians. + * @param[in] x Scaled input value in radians. * @return cos(x). */ - q31_t arm_cos_q31( q31_t x); + /** * @brief Fast approximation to the trigonometric cosine function for Q15 data. - * @param[in] x Scaled input value in radians. + * @param[in] x Scaled input value in radians. * @return cos(x). */ - q15_t arm_cos_q15( q15_t x); @@ -6091,22 +5818,26 @@ /** * @brief Floating-point square root function. - * @param[in] in input value. - * @param[out] *pOut square root of input value. + * @param[in] in input value. + * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ - - static __INLINE arm_status arm_sqrt_f32( + CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32( float32_t in, float32_t * pOut) { - if(in >= 0.0f) + if (in >= 0.0f) { -// #if __FPU_USED -#if (__FPU_USED == 1) && defined ( __CC_ARM ) +#if (__FPU_USED == 1) && defined ( __CC_ARM ) *pOut = __sqrtf(in); +#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) + *pOut = __builtin_sqrtf(in); +#elif (__FPU_USED == 1) && defined(__GNUC__) + *pOut = __builtin_sqrtf(in); +#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) + __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); #else *pOut = sqrtf(in); #endif @@ -6118,14 +5849,13 @@ *pOut = 0.0f; return (ARM_MATH_ARGUMENT_ERROR); } - } /** * @brief Q31 square root function. - * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. - * @param[out] *pOut square root of input value. + * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. + * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ @@ -6133,10 +5863,11 @@ q31_t in, q31_t * pOut); + /** * @brief Q15 square root function. - * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. - * @param[out] *pOut square root of input value. + * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. + * @param[out] pOut square root of input value. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if * <code>in</code> is negative value and returns zero output for negative values. */ @@ -6149,15 +5880,10 @@ */ - - - - /** * @brief floating-point Circular write function. */ - - static __INLINE void arm_circularWrite_f32( + CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32( int32_t * circBuffer, int32_t L, uint16_t * writeOffset, @@ -6176,7 +5902,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; @@ -6186,7 +5912,7 @@ /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; - if(wOffset >= L) + if (wOffset >= L) wOffset -= L; /* Decrement the loop counter */ @@ -6194,7 +5920,7 @@ } /* Update the index pointer */ - *writeOffset = wOffset; + *writeOffset = (uint16_t)wOffset; } @@ -6202,7 +5928,7 @@ /** * @brief floating-point Circular Read function. */ - static __INLINE void arm_circularRead_f32( + CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32( int32_t * circBuffer, int32_t L, int32_t * readOffset, @@ -6224,7 +5950,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; @@ -6232,7 +5958,7 @@ /* Update the input pointer */ dst += dstInc; - if(dst == (int32_t *) dst_end) + if (dst == (int32_t *) dst_end) { dst = dst_base; } @@ -6240,7 +5966,7 @@ /* Circularly update rOffset. Watch out for positive and negative value */ rOffset += bufferInc; - if(rOffset >= L) + if (rOffset >= L) { rOffset -= L; } @@ -6253,11 +5979,11 @@ *readOffset = rOffset; } + /** * @brief Q15 Circular write function. */ - - static __INLINE void arm_circularWrite_q15( + CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15( q15_t * circBuffer, int32_t L, uint16_t * writeOffset, @@ -6276,7 +6002,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; @@ -6286,7 +6012,7 @@ /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; - if(wOffset >= L) + if (wOffset >= L) wOffset -= L; /* Decrement the loop counter */ @@ -6294,15 +6020,14 @@ } /* Update the index pointer */ - *writeOffset = wOffset; + *writeOffset = (uint16_t)wOffset; } - /** * @brief Q15 Circular Read function. */ - static __INLINE void arm_circularRead_q15( + CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15( q15_t * circBuffer, int32_t L, int32_t * readOffset, @@ -6325,7 +6050,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; @@ -6333,7 +6058,7 @@ /* Update the input pointer */ dst += dstInc; - if(dst == (q15_t *) dst_end) + if (dst == (q15_t *) dst_end) { dst = dst_base; } @@ -6341,7 +6066,7 @@ /* Circularly update wOffset. Watch out for positive and negative value */ rOffset += bufferInc; - if(rOffset >= L) + if (rOffset >= L) { rOffset -= L; } @@ -6358,8 +6083,7 @@ /** * @brief Q7 Circular write function. */ - - static __INLINE void arm_circularWrite_q7( + CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7( q7_t * circBuffer, int32_t L, uint16_t * writeOffset, @@ -6378,7 +6102,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the input sample to the circular buffer */ circBuffer[wOffset] = *src; @@ -6388,7 +6112,7 @@ /* Circularly update wOffset. Watch out for positive and negative value */ wOffset += bufferInc; - if(wOffset >= L) + if (wOffset >= L) wOffset -= L; /* Decrement the loop counter */ @@ -6396,15 +6120,14 @@ } /* Update the index pointer */ - *writeOffset = wOffset; + *writeOffset = (uint16_t)wOffset; } - /** * @brief Q7 Circular Read function. */ - static __INLINE void arm_circularRead_q7( + CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7( q7_t * circBuffer, int32_t L, int32_t * readOffset, @@ -6427,7 +6150,7 @@ /* Loop over the blockSize */ i = blockSize; - while(i > 0u) + while (i > 0u) { /* copy the sample from the circular buffer to the destination buffer */ *dst = circBuffer[rOffset]; @@ -6435,7 +6158,7 @@ /* Update the input pointer */ dst += dstInc; - if(dst == (q7_t *) dst_end) + if (dst == (q7_t *) dst_end) { dst = dst_base; } @@ -6443,7 +6166,7 @@ /* Circularly update rOffset. Watch out for positive and negative value */ rOffset += bufferInc; - if(rOffset >= L) + if (rOffset >= L) { rOffset -= L; } @@ -6459,271 +6182,252 @@ /** * @brief Sum of the squares of the elements of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_power_q31( q31_t * pSrc, uint32_t blockSize, q63_t * pResult); + /** * @brief Sum of the squares of the elements of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_power_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Sum of the squares of the elements of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_power_q15( q15_t * pSrc, uint32_t blockSize, q63_t * pResult); + /** * @brief Sum of the squares of the elements of a Q7 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_power_q7( q7_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Mean value of a Q7 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_mean_q7( q7_t * pSrc, uint32_t blockSize, q7_t * pResult); + /** * @brief Mean value of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. */ void arm_mean_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); + /** * @brief Mean value of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. */ void arm_mean_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Mean value of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. */ void arm_mean_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Variance of the elements of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_var_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Variance of the elements of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_var_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Variance of the elements of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_var_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); + /** * @brief Root Mean Square of the elements of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_rms_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Root Mean Square of the elements of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_rms_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Root Mean Square of the elements of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_rms_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); + /** * @brief Standard deviation of the elements of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_std_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult); + /** * @brief Standard deviation of the elements of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_std_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult); + /** * @brief Standard deviation of the elements of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output value. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ void arm_std_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult); + /** * @brief Floating-point complex magnitude - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples); + /** * @brief Q31 complex magnitude - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples); + /** * @brief Q15 complex magnitude - * @param[in] *pSrc points to the complex input vector - * @param[out] *pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - * @return none. - */ - + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ void arm_cmplx_mag_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples); + /** * @brief Q15 complex dot product - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] *realResult real part of the result returned here - * @param[out] *imagResult imaginary part of the result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ void arm_cmplx_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, @@ -6731,16 +6435,15 @@ q31_t * realResult, q31_t * imagResult); + /** * @brief Q31 complex dot product - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] *realResult real part of the result returned here - * @param[out] *imagResult imaginary part of the result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ void arm_cmplx_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, @@ -6748,16 +6451,15 @@ q63_t * realResult, q63_t * imagResult); + /** * @brief Floating-point complex dot product - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] *realResult real part of the result returned here - * @param[out] *imagResult imaginary part of the result returned here - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ void arm_cmplx_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, @@ -6765,88 +6467,83 @@ float32_t * realResult, float32_t * imagResult); + /** * @brief Q15 complex-by-real multiplication - * @param[in] *pSrcCmplx points to the complex input vector - * @param[in] *pSrcReal points to the real input vector - * @param[out] *pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - * @return none. - */ - + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ void arm_cmplx_mult_real_q15( q15_t * pSrcCmplx, q15_t * pSrcReal, q15_t * pCmplxDst, uint32_t numSamples); + /** * @brief Q31 complex-by-real multiplication - * @param[in] *pSrcCmplx points to the complex input vector - * @param[in] *pSrcReal points to the real input vector - * @param[out] *pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - * @return none. - */ - + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ void arm_cmplx_mult_real_q31( q31_t * pSrcCmplx, q31_t * pSrcReal, q31_t * pCmplxDst, uint32_t numSamples); + /** * @brief Floating-point complex-by-real multiplication - * @param[in] *pSrcCmplx points to the complex input vector - * @param[in] *pSrcReal points to the real input vector - * @param[out] *pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - * @return none. - */ - + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ void arm_cmplx_mult_real_f32( float32_t * pSrcCmplx, float32_t * pSrcReal, float32_t * pCmplxDst, uint32_t numSamples); + /** * @brief Minimum value of a Q7 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *result is output pointer - * @param[in] index is the array index of the minimum value in the input buffer. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] result is output pointer + * @param[in] index is the array index of the minimum value in the input buffer. + */ void arm_min_q7( q7_t * pSrc, uint32_t blockSize, q7_t * result, uint32_t * index); + /** * @brief Minimum value of a Q15 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output pointer - * @param[in] *pIndex is the array index of the minimum value in the input buffer. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[in] pIndex is the array index of the minimum value in the input buffer. + */ void arm_min_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex); + /** * @brief Minimum value of a Q31 vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output pointer - * @param[out] *pIndex is the array index of the minimum value in the input buffer. - * @return none. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. */ void arm_min_q31( q31_t * pSrc, @@ -6854,156 +6551,148 @@ q31_t * pResult, uint32_t * pIndex); + /** * @brief Minimum value of a floating-point vector. - * @param[in] *pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] *pResult is output pointer - * @param[out] *pIndex is the array index of the minimum value in the input buffer. - * @return none. - */ - + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ void arm_min_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult, uint32_t * pIndex); + /** * @brief Maximum value of a Q7 vector. - * @param[in] *pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] *pResult maximum value returned here - * @param[out] *pIndex index of maximum value returned here - * @return none. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here */ - void arm_max_q7( q7_t * pSrc, uint32_t blockSize, q7_t * pResult, uint32_t * pIndex); + /** * @brief Maximum value of a Q15 vector. - * @param[in] *pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] *pResult maximum value returned here - * @param[out] *pIndex index of maximum value returned here - * @return none. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here */ - void arm_max_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex); + /** * @brief Maximum value of a Q31 vector. - * @param[in] *pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] *pResult maximum value returned here - * @param[out] *pIndex index of maximum value returned here - * @return none. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here */ - void arm_max_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult, uint32_t * pIndex); + /** * @brief Maximum value of a floating-point vector. - * @param[in] *pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] *pResult maximum value returned here - * @param[out] *pIndex index of maximum value returned here - * @return none. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here */ - void arm_max_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult, uint32_t * pIndex); + /** * @brief Q15 complex-by-complex multiplication - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_mult_cmplx_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t numSamples); + /** * @brief Q31 complex-by-complex multiplication - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_mult_cmplx_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t numSamples); + /** * @brief Floating-point complex-by-complex multiplication - * @param[in] *pSrcA points to the first input vector - * @param[in] *pSrcB points to the second input vector - * @param[out] *pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - * @return none. - */ - + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ void arm_cmplx_mult_cmplx_f32( float32_t * pSrcA, float32_t * pSrcB, float32_t * pDst, uint32_t numSamples); + /** * @brief Converts the elements of the floating-point vector to Q31 vector. - * @param[in] *pSrc points to the floating-point input vector - * @param[out] *pDst points to the Q31 output vector - * @param[in] blockSize length of the input vector - * @return none. + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q31 output vector + * @param[in] blockSize length of the input vector */ void arm_float_to_q31( float32_t * pSrc, q31_t * pDst, uint32_t blockSize); + /** * @brief Converts the elements of the floating-point vector to Q15 vector. - * @param[in] *pSrc points to the floating-point input vector - * @param[out] *pDst points to the Q15 output vector - * @param[in] blockSize length of the input vector - * @return none + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector */ void arm_float_to_q15( float32_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Converts the elements of the floating-point vector to Q7 vector. - * @param[in] *pSrc points to the floating-point input vector - * @param[out] *pDst points to the Q7 output vector - * @param[in] blockSize length of the input vector - * @return none + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q7 output vector + * @param[in] blockSize length of the input vector */ void arm_float_to_q7( float32_t * pSrc, @@ -7013,34 +6702,33 @@ /** * @brief Converts the elements of the Q31 vector to Q15 vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q31_to_q15( q31_t * pSrc, q15_t * pDst, uint32_t blockSize); + /** * @brief Converts the elements of the Q31 vector to Q7 vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q31_to_q7( q31_t * pSrc, q7_t * pDst, uint32_t blockSize); + /** * @brief Converts the elements of the Q15 vector to floating-point vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q15_to_float( q15_t * pSrc, @@ -7050,10 +6738,9 @@ /** * @brief Converts the elements of the Q15 vector to Q31 vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q15_to_q31( q15_t * pSrc, @@ -7063,10 +6750,9 @@ /** * @brief Converts the elements of the Q15 vector to Q7 vector. - * @param[in] *pSrc is input pointer - * @param[out] *pDst is output pointer - * @param[in] blockSize is the number of samples to process - * @return none. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process */ void arm_q15_to_q7( q15_t * pSrc, @@ -7135,17 +6821,16 @@ * @{ */ + /** * * @brief Floating-point bilinear interpolation. - * @param[in,out] *S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate. - * @param[in] Y interpolation coordinate. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. * @return out interpolated value. */ - - - static __INLINE float32_t arm_bilinear_interp_f32( + CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32( const arm_bilinear_interp_instance_f32 * S, float32_t X, float32_t Y) @@ -7162,8 +6847,7 @@ /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ - if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 - || yIndex > (S->numCols - 1)) + if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) { return (0); } @@ -7201,19 +6885,18 @@ /* return to application */ return (out); - } + /** * * @brief Q31 bilinear interpolation. - * @param[in,out] *S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ - - static __INLINE q31_t arm_bilinear_interp_q31( + CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31( arm_bilinear_interp_instance_q31 * S, q31_t X, q31_t Y) @@ -7226,20 +6909,19 @@ q31_t *pYData = S->pData; /* pointer to output table values */ uint32_t nCols = S->numCols; /* num of rows */ + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - rI = ((X & 0xFFF00000) >> 20u); - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - cI = ((Y & 0xFFF00000) >> 20u); + cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ - if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } @@ -7249,19 +6931,19 @@ xfract = (X & 0x000FFFFF) << 11u; /* Read two nearest output values from the index */ - x1 = pYData[(rI) + nCols * (cI)]; - x2 = pYData[(rI) + nCols * (cI) + 1u]; + x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; + x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; /* 20 bits for the fractional part */ /* shift left yfract by 11 to keep 1.31 format */ yfract = (Y & 0x000FFFFF) << 11u; /* Read two nearest output values from the index */ - y1 = pYData[(rI) + nCols * (cI + 1)]; - y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; + y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ - out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); + out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ @@ -7277,19 +6959,18 @@ acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); /* Convert acc to 1.31(q31) format */ - return (acc << 2u); - + return ((q31_t)(acc << 2)); } + /** * @brief Q15 bilinear interpolation. - * @param[in,out] *S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ - - static __INLINE q15_t arm_bilinear_interp_q15( + CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15( arm_bilinear_interp_instance_q15 * S, q31_t X, q31_t Y) @@ -7305,16 +6986,16 @@ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - rI = ((X & 0xFFF00000) >> 20); + rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - cI = ((Y & 0xFFF00000) >> 20); + cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ - if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } @@ -7324,17 +7005,16 @@ xfract = (X & 0x000FFFFF); /* Read two nearest output values from the index */ - x1 = pYData[(rI) + nCols * (cI)]; - x2 = pYData[(rI) + nCols * (cI) + 1u]; - + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; /* 20 bits for the fractional part */ /* yfract should be in 12.20 format */ yfract = (Y & 0x000FFFFF); /* Read two nearest output values from the index */ - y1 = pYData[(rI) + nCols * (cI + 1)]; - y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ @@ -7357,19 +7037,18 @@ /* acc is in 13.51 format and down shift acc by 36 times */ /* Convert out to 1.15 format */ - return (acc >> 36); - + return ((q15_t)(acc >> 36)); } + /** * @brief Q7 bilinear interpolation. - * @param[in,out] *S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. * @return out interpolated value. */ - - static __INLINE q7_t arm_bilinear_interp_q7( + CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7( arm_bilinear_interp_instance_q7 * S, q31_t X, q31_t Y) @@ -7385,36 +7064,35 @@ /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - rI = ((X & 0xFFF00000) >> 20); + rI = ((X & (q31_t)0xFFF00000) >> 20); /* Input is in 12.20 format */ /* 12 bits for the table index */ /* Index value calculation */ - cI = ((Y & 0xFFF00000) >> 20); + cI = ((Y & (q31_t)0xFFF00000) >> 20); /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ - if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) { return (0); } /* 20 bits for the fractional part */ /* xfract should be in 12.20 format */ - xfract = (X & 0x000FFFFF); + xfract = (X & (q31_t)0x000FFFFF); /* Read two nearest output values from the index */ - x1 = pYData[(rI) + nCols * (cI)]; - x2 = pYData[(rI) + nCols * (cI) + 1u]; - + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; /* 20 bits for the fractional part */ /* yfract should be in 12.20 format */ - yfract = (Y & 0x000FFFFF); + yfract = (Y & (q31_t)0x000FFFFF); /* Read two nearest output values from the index */ - y1 = pYData[(rI) + nCols * (cI + 1)]; - y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ out = ((x1 * (0xFFFFF - xfract))); @@ -7433,120 +7111,143 @@ acc += (((q63_t) out * (xfract))); /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ - return (acc >> 40); - + return ((q7_t)(acc >> 40)); } /** * @} end of BilinearInterpolate group */ - - -//SMMLAR + + +/* SMMLAR */ #define multAcc_32x32_keep32_R(a, x, y) \ a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) -//SMMLSR +/* SMMLSR */ #define multSub_32x32_keep32_R(a, x, y) \ a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) -//SMMULR +/* SMMULR */ #define mult_32x32_keep32_R(a, x, y) \ a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) -//SMMLA +/* SMMLA */ #define multAcc_32x32_keep32(a, x, y) \ a += (q31_t) (((q63_t) x * y) >> 32) -//SMMLS +/* SMMLS */ #define multSub_32x32_keep32(a, x, y) \ a -= (q31_t) (((q63_t) x * y) >> 32) -//SMMUL +/* SMMUL */ #define mult_32x32_keep32(a, x, y) \ a = (q31_t) (((q63_t) x * y ) >> 32) -#if defined ( __CC_ARM ) //Keil - -//Enter low optimization region - place directly above function definition - #ifdef ARM_MATH_CM4 - #define LOW_OPTIMIZATION_ENTER \ - _Pragma ("push") \ - _Pragma ("O1") - #else - #define LOW_OPTIMIZATION_ENTER - #endif - -//Exit low optimization region - place directly after end of function definition - #ifdef ARM_MATH_CM4 - #define LOW_OPTIMIZATION_EXIT \ - _Pragma ("pop") - #else - #define LOW_OPTIMIZATION_EXIT - #endif - -//Enter low optimization region - place directly above function definition +#if defined ( __CC_ARM ) + /* Enter low optimization region - place directly above function definition */ + #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + #else + #define LOW_OPTIMIZATION_EXIT + #endif + + /* Enter low optimization region - place directly above function definition */ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER -//Exit low optimization region - place directly after end of function definition + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __GNUC__ ) + #define LOW_OPTIMIZATION_ENTER \ + __attribute__(( optimize("-O1") )) + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER #define IAR_ONLY_LOW_OPTIMIZATION_EXIT -#elif defined(__ICCARM__) //IAR - -//Enter low optimization region - place directly above function definition - #ifdef ARM_MATH_CM4 - #define LOW_OPTIMIZATION_ENTER \ - _Pragma ("optimize=low") - #else - #define LOW_OPTIMIZATION_ENTER - #endif - -//Exit low optimization region - place directly after end of function definition +#elif defined ( __ICCARM__ ) + /* Enter low optimization region - place directly above function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ #define LOW_OPTIMIZATION_EXIT -//Enter low optimization region - place directly above function definition - #ifdef ARM_MATH_CM4 - #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ - _Pragma ("optimize=low") - #else - #define IAR_ONLY_LOW_OPTIMIZATION_ENTER - #endif - -//Exit low optimization region - place directly after end of function definition + /* Enter low optimization region - place directly above function definition */ + #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT -#elif defined(__GNUC__) - - #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) - +#elif defined ( __TI_ARM__ ) + #define LOW_OPTIMIZATION_ENTER #define LOW_OPTIMIZATION_EXIT - #define IAR_ONLY_LOW_OPTIMIZATION_ENTER - #define IAR_ONLY_LOW_OPTIMIZATION_EXIT -#elif defined(__CSMC__) // Cosmic - -#define LOW_OPTIMIZATION_ENTER -#define LOW_OPTIMIZATION_EXIT -#define IAR_ONLY_LOW_OPTIMIZATION_ENTER -#define IAR_ONLY_LOW_OPTIMIZATION_EXIT - -#elif defined(__TASKING__) // TASKING - -#define LOW_OPTIMIZATION_ENTER -#define LOW_OPTIMIZATION_EXIT -#define IAR_ONLY_LOW_OPTIMIZATION_ENTER -#define IAR_ONLY_LOW_OPTIMIZATION_EXIT +#elif defined ( __CSMC__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __TASKING__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT #endif -#ifdef __cplusplus +#ifdef __cplusplus } #endif +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __GNUC__ ) +#pragma GCC diagnostic pop + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#else + #error Unknown compiler +#endif #endif /* _ARM_MATH_H */