SAIT ARIS / LRAT-example-lorawan-REFACTOR-and-CLEAN-Branch

Dependencies:   Custom_LSM303 Custom_UBloxGPS LRAT-mbed-os USBDevice mbed-lora-radio-drv stm32EEPROM

Fork of LRAT-example-lorawan by SAIT ARIS

main.cpp

Committer:
Huot87
Date:
2018-09-06
Revision:
43:c900cd8ea072
Parent:
42:d59e50622292
Child:
44:cf1070af05db

File content as of revision 43:c900cd8ea072:

/**
 * Copyright (c) 2017, Arm Limited and affiliates.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//#define TARGET_LRAT 1
#define TARGET_DISCO1 1
//#define TARGET_DISCO2 1
//#define SENSOR_TEMP 1

#include "foo.h"
int weGetSignal = 0;

#define DCHILL 600  // Cycle delay in chill mode.
#define DPANIC 60   // Cycle delay in panic mode.
#define NPANIC 5    // Number of unprovoked panic cycles before cooldown.

#include <stdio.h>
#include "mbed.h"

#include "lorawan/LoRaWANInterface.h"
#include "lorawan/system/lorawan_data_structures.h"
#include "events/EventQueue.h"

// Application helpers
#include "DummySensor.h"
#include "trace_helper.h"
#include "lora_radio_helper.h"

// HUOT ADDITION -- 08/21/2018 -- Import of EEPROM Library
#include "stm32EEPROM.h"

#include "mbed-trace/mbed_trace.h"
#define TRACE_GROUP "MAIN"

using namespace events;

// Max payload size can be LORAMAC_PHY_MAXPAYLOAD.
// This example only communicates with much shorter messages (<30 bytes).
// If longer messages are used, these buffers must be changed accordingly.
uint8_t tx_buffer[30];
uint8_t rx_buffer[30];

/*
 * Sets up an application dependent transmission timer in ms. Used only when Duty Cycling is off for testing
 */
#define TX_TIMER                        10000

/**
 * Maximum number of events for the event queue.
 * 10 is the safe number for the stack events, however, if application
 * also uses the queue for whatever purposes, this number should be increased.
 */
#define MAX_NUMBER_OF_EVENTS            10

/**
 * Maximum number of retries for CONFIRMED messages before giving up
 */
#define CONFIRMED_MSG_RETRY_COUNTER     3


// HUOT NOTE -- THINK THIS CAN BE REMOVED
/**
 * Dummy pin for dummy sensor
 */
//#define PC_9                            0

/**
 * Dummy sensor class object
 */
//DS1820  ds1820(PC_9);

#define PACKET_LEN                      11

/**
* This event queue is the global event queue for both the
* application and stack. To conserve memory, the stack is designed to run
* in the same thread as the application and the application is responsible for
* providing an event queue to the stack that will be used for ISR deferment as
* well as application information event queuing.
*/
static EventQueue ev_queue(MAX_NUMBER_OF_EVENTS * EVENTS_EVENT_SIZE);

/**
 * Event handler.
 *
 * This will be passed to the LoRaWAN stack to queue events for the
 * application which in turn drive the application.
 */
static void lora_event_handler(lorawan_event_t event);

/**
 * Constructing Mbed LoRaWANInterface and passing it down the radio object.
 */
static LoRaWANInterface lorawan(radio);

/**
 * Application specific callbacks
 */
static lorawan_app_callbacks_t callbacks;

/*
#if defined(TARGET_LRAT) or defined(TARGET_DISCO2)
#include "USBSerial.h"
USBSerial serial;
FileHandle* mbed::mbed_override_console(int) {
    return &serial;
}
#endif
*/

uint32_t mytime = 0;
uint8_t  mybatt = 0;
double   mylat = 0;
double   mylon = 0;

int16_t myAccX = 0;
int16_t myAccY = 0;
int16_t myAccZ = 0;
int16_t myMagX = 0;
int16_t myMagY = 0;
int16_t myMagZ = 0;
int16_t myOffX = 0;
int16_t myOffY = 0;
int16_t myOffZ = 0;
int16_t myTemp = 0;

int16_t accMinX = 0;
int16_t accMinY = 0;
int16_t accMinZ = 0;
int16_t accMaxX = 0;
int16_t accMaxY = 0;
int16_t accMaxZ = 0;

int16_t magMinX = 0;
int16_t magMinY = 0;
int16_t magMinZ = 0;
int16_t magMaxX = 0;
int16_t magMaxY = 0;
int16_t magMaxZ = 0;

#define NEOM8M_ADR_GPS 0x84
//#define LSM303_ADR_ACC 0x32
#define LSM303_ADR_MAG 0x3C

#define NEOM8M_REG_GPS_LENH 0xFD
#define NEOM8M_REG_GPS_LENL 0xFE
#define NEOM8M_REG_GPS_DATA 0xFE
#define LSM303_REG_ACC_STATUS_REG_AUX_A 0x07
//#define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
//#define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
#define LSM303_REG_ACC_WHO_AM_I_A 0x0F
//#define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
#define LSM303_REG_ACC_CTRL_REG1_A 0x20
#define LSM303_REG_ACC_CTRL_REG2_A 0x21
#define LSM303_REG_ACC_CTRL_REG3_A 0x22
#define LSM303_REG_ACC_CTRL_REG4_A 0x23
#define LSM303_REG_ACC_CTRL_REG5_A 0x24
#define LSM303_REG_ACC_CTRL_REG6_A 0x25
#define LSM303_REG_ACC_STATUS_REG_A 0x27
#define LSM303_REG_ACC_OUT_X_L_A 0x28
#define LSM303_REG_ACC_OUT_X_H_A 0x29
#define LSM303_REG_ACC_OUT_Y_L_A 0x2A
#define LSM303_REG_ACC_OUT_Y_H_A 0x2B
#define LSM303_REG_ACC_OUT_Z_L_A 0x2C
#define LSM303_REG_ACC_OUT_Z_H_A 0x2D
#define LSM303_REG_ACC_INT1_CFG_A 0x30
#define LSM303_REG_ACC_INT1_SRC_A 0x31
#define LSM303_REG_ACC_INT1_THS_A 0x32
#define LSM303_REG_ACC_INT1_DURATION_A 0x33

#define LSM303_REG_MAG_OFFSET_X_REG_L_M 0x45
#define LSM303_REG_MAG_OFFSET_X_REG_H_M 0x46
#define LSM303_REG_MAG_OFFSET_Y_REG_L_M 0x47
#define LSM303_REG_MAG_OFFSET_Y_REG_H_M 0x48
#define LSM303_REG_MAG_OFFSET_Z_REG_L_M 0x49
#define LSM303_REG_MAG_OFFSET_Z_REG_H_M 0x4A
//#define LSM303_REG_MAG_WHO_AM_I_M 0x4F
//#define LSM303_REG_MAG_CFG_REG_A_M 0x60
//#define LSM303_REG_MAG_CFG_REG_B_M 0x61
//#define LSM303_REG_MAG_CFG_REG_C_M 0x62
#define LSM303_REG_MAG_INT_CTRL_REG_M 0x63
#define LSM303_REG_MAG_INT_SOURCE_REG_M 0x64
#define LSM303_REG_MAG_INT_THS_L_REG_M 0x65
#define LSM303_REG_MAG_INT_THS_H_REG_M 0x66
//#define LSM303_REG_MAG_STATUS_REG_M 0x67
//#define LSM303_REG_MAG_OUTX_L_REG_M 0x68
//#define LSM303_REG_MAG_OUTX_H_REG_M 0x69
//#define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
//#define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
//#define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
//#define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D

#define EEPROM_MAX 0x17FF

#if defined(TARGET_LRAT)
    #define LEDR PB_6
    #define LEDG PB_7
    #define LEDB PB_5
    #define LEDW PB_2
    #define PIN_ACC PB_14
    #define PIN_MAG PB_12
    #define PIN_BTN PA_5
    #define PIN_ALT PA_4
    #define LSM303_ADR_ACC 0x3A
    #define LSM303_REG_MAG_WHO_AM_I_M 0x0F
    #define LSM303_WHO_ACC 0x41
    #define LSM303_WHO_MAG 0x3D
    #define LSM303_CTRL_REG7_A 0x26
    #define LSM303_REG_MAG_CTRL_REG1_M 0x20
    #define LSM303_REG_MAG_CTRL_REG2_M 0x21
    #define LSM303_REG_MAG_CTRL_REG3_M 0x22
    #define LSM303_REG_MAG_CTRL_REG4_M 0x23
    #define LSM303_REG_MAG_CTRL_REG5_M 0x24
    #define LSM303_REG_MAG_STATUS_REG_M 0x27
    #define LSM303_REG_MAG_OUTX_L_REG_M 0x28
    #define LSM303_REG_MAG_OUTX_H_REG_M 0x29
    #define LSM303_REG_MAG_OUTY_L_REG_M 0x2A
    #define LSM303_REG_MAG_OUTY_H_REG_M 0x2B
    #define LSM303_REG_MAG_OUTZ_L_REG_M 0x2C
    #define LSM303_REG_MAG_OUTZ_H_REG_M 0x2D
    #define LSM303_REG_MAG_TEMP_L_M 0x2E
    #define LSM303_REG_MAG_TEMP_H_M 0x2F
    #define LSM303_REG_MAG_TEMP_CFG_REG_A 0x1F
    #define CFG_ACC_ADR LSM303_REG_ACC_CTRL_REG1_A
    #define CFG_ACC_LEN 7
    #define CFG_MAG_ADR LSM303_REG_MAG_CTRL_REG1_M
    #define CFG_MAG_LEN 5
    
    // HUOT ADDITIONS -- 08/30/2018 -- Port of LRAT LSM303CTR ACC Register definitions
    // LSM303CTR Specific ACC Register ID's
    #define LSM303_REG_ACC_INT1_THS_X1_A 0x32
    #define LSM303_REG_ACC_INT1_THS_Y1_A 0x33
    #define LSM303_REG_ACC_INT1_THS_Z1_A 0x34
    #define LSM303_REG_ACC_INT1_DURATION_A 0x35
    #define LSM303_REG_ACC_INT2_CFG_A 0x36
    #define LSM303_REG_ACC_INT2_SRC_A 0x37
    #define LSM303_REG_ACC_INT2_THS_A 0x38
    #define LSM303_REG_ACC_INT2_DURATION_A 0x39
    #define LSM303_REG_ACC_XL_REFERENCE 0x3A
    #define LSM303_REG_ACC_XH_REFERENCE 0x3B
    #define LSM303_REG_ACC_YL_REFERENCE 0x3C
    #define LSM303_REG_ACC_YH_REFERENCE 0x3D
    #define LSM303_REG_ACC_ZL_REFERENCE 0x3E
    #define LSM303_REG_ACC_ZH_REFERENCE 0x3F
    
#else
    #define LEDR PB_7
    #define LEDG PB_5
    #define LEDB PB_6
    #define LEDW PA_5
    #define PIN_ACC PB_14 // Not really.
    #if defined(TARGET_DISCO2)
        #define PIN_MAG PB_13
        #define PIN_GPS PA_10
    #else
        #define PIN_MAG PA_10
        #define PIN_GPS PB_13
    #endif
    #define PIN_BTN PB_2
    #define LSM303_ADR_ACC 0x32
    #define LSM303_REG_MAG_WHO_AM_I_M 0x4F
    #define LSM303_WHO_ACC 0x33
    #define LSM303_WHO_MAG 0x40
    #define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
    #define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
    #define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
    #define LSM303_REG_MAG_CFG_REG_A_M 0x60
    #define LSM303_REG_MAG_CFG_REG_B_M 0x61
    #define LSM303_REG_MAG_CFG_REG_C_M 0x62
    #define LSM303_REG_MAG_STATUS_REG_M 0x67
    #define LSM303_REG_MAG_OUTX_L_REG_M 0x68
    #define LSM303_REG_MAG_OUTX_H_REG_M 0x69
    #define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
    #define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
    #define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
    #define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D
    #define CFG_ACC_ADR LSM303_REG_ACC_TEMP_CFG_REG_A // Start Disco at TEMP CFG.
    #define CFG_ACC_LEN 7
    #define CFG_MAG_ADR LSM303_REG_MAG_CFG_REG_A_M
    #define CFG_MAG_LEN 3
#endif

I2C i2c(PB_9, PB_8);
InterruptIn accPin(PIN_ACC);
InterruptIn magPin(PIN_MAG);
InterruptIn btnPin(PIN_BTN);

#if defined(TARGET_DISCO1) or defined(TARGET_DISCO2)
DigitalOut gpsPin(PIN_GPS);
#endif

uint8_t cfg;
char ret;
char rda = '\0';
char cmd[2];
//char buf[83];
char buf[192];
uint8_t pos = 0;

int accShift = 0;
int accScale = 0;
int accEvent = 0;
uint8_t accSFire = 0;
uint8_t accHFire = 0;
uint8_t accSLIRQ = 0;
uint8_t accSHIRQ = 0;
int magEvent = 0;
uint8_t magSFire = 0;
uint8_t magHFire = 0;
uint8_t magSLIRQ = 0;
uint8_t magSHIRQ = 0;
uint8_t btnHFire = 0;

char *res;
char sPass[26] = "[\u001b[32mPASS\u001b[0m]";
char sFail[26] = "[\u001b[31mFAIL\u001b[0m]";
char cmdSendLoop[9] = "SendLoop";
//char cmdStopGNSS[14] = {0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x53, 0x54, 0x4F, 0x50};

//#define CMDSTOPGNSS {0xFF, 0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x53, 0x54, 0x4F, 0x50}
//char cmdStopGNSS[16] {0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // Leave 2 bytes for CRC.
//char cmdStopGNSS[16] {0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x01, 0x00, 0x00, 0x00, 0x53, 0x54, 0x4F, 0x50}; // Leave 2 bytes for CRC.
char cmdStopGNSS[16] {0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x01, 0x00, 0x00, 0x00, 0x50, 0x4F, 0x54, 0x53}; // Leave 2 bytes for CRC. // Note Byte character is Little Endian from what doc says
char cmdReadGNSS[8] {0xB5, 0x62, 0x06, 0x57, 0x00, 0x00};
char cmdReadCfgU[8] {0xB5, 0x62, 0x06, 0x1B, 0x00, 0x00}; // Leave 2 bytes for CRC.
char cmdPollPort[9] {0xB5, 0x62, 0x06, 0x00, 0x01, 0x00, 0x00};

// HUOT ADDITIONS - 08/29/18 -- ADDED UBX-CFG CHAR BUFFERS -- BOTTOM TWO WORK!
// UBX-CFG-GNSS -- Disable Glonass (also leave 2 bytes)
char cmdDisableGLONASS[68] {0xB5, 0x62, 0x06, 0x3E, 0x3C, 0x00, 0x00, 0x20, 0x20, 0x07, 0x00, 0x08, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01, 0x01, 0x01, 0x03, 0x00, 0x01, 0x00, 0x01, 0x01, 0x02, 0x04, 0x08, 0x00, 0x00, 0x00, 0x01, 0x01, 0x03, 0x08, 0x10, 0x00, 0x00, 0x00, 0x01, 0x01, 0x04, 0x00, 0x08, 0x00, 0x00, 0x00, 0x01, 0x03, 0x05, 0x00, 0x03, 0x00, 0x01, 0x00, 0x01, 0x05, 0x06, 0x08, 0x0E, 0x00, 0x01, 0x00, 0x01, 0x01};
// UBX-CFG-TP5 -- Disable Timepulse (also leave 2 bytes)
char cmdDisableTimePulse[40] {0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x01, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x40, 0x42, 0x0F, 0x00, 0x40, 0x42, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0xA0, 0x86, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x76, 0x00, 0x00, 0x00};
// UBX-CFG-PM2 -- Configure Power Management Setup (also leave 2 bytes)
char cmdConfigPMS[52] {0xB5, 0x62, 0x06, 0x3B, 0x2C, 0x00, 0x01, 0x06, 0x00, 0x00, 0x2E, 0x08, 0x40, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2C, 0x01, 0x00, 0x00, 0x4F, 0xC1, 0x03, 0x00, 0x86, 0x02, 0x00, 0x00, 0xFE, 0x00, 0x00, 0x00, 0x64, 0x40, 0x01, 0x00, 0x56, 0xA4};
char cmdSaveConfig[21] {0xB5, 0x62, 0x06, 0x09, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03}; // UBX-CFG-CFG -- Save Configuration (also leave 2 bytes)
char cmdResetDefaults[21] {0xB5, 0x62, 0x06, 0x09, 0x0D, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x03}; // UBX-CFG-CFG -- Reset to Defaults (also leave 2 bytes)

// THIS WORKS
char lowPowerMode[10] {0xB5, 0x62, 0x06, 0x11, 0x02, 0x00, 0x48, 0x01};
char secondTimeSleep[12] {0xB5, 0x62, 0x06, 0x04, 0x04, 0x00, 0x00, 0x00,0x08, 0x00};
char secondTimeAwake[12] {0xB5, 0x62, 0x06, 0x04, 0x04, 0x00, 0x00, 0x00,0x09, 0x00};


// HUOT ADDITIONS -- 08/31/2018 -- EEPROM Variables
bool wasEEPROM = false;
bool continueSending = true;
int eepromCounter = 0;
int registerLocation = 0;

time_t tInit = 0;
time_t tBump = 0;
time_t tLast = 0;
time_t tNext = 0;
time_t tSend = 0;
time_t tCalm = 0;

DigitalOut myLedR(LEDR);
DigitalOut myLedG(LEDG);
DigitalOut myLedB(LEDB);
DigitalOut myLedW(LEDW);

void magInitSequence();
void accInitSequence();
void gpsInitSequence();
// HUOT ADDITION -- 08/30/2018
void gpsExecuteCommand(char *command, int length);
void tmpRead();
void magRead();
void accRead();
int gpsRead();
void ubxRead();
void send_message();
void send_backlog();
// HUOT ADDITION -- 08/31/2018
void backupPacket();
void prepBacklogSend();

void onBtnIrq()
{
    btnHFire++;
    tSend = 0;
}

void onAccIrq()
{
    accHFire++;
    tSend = 0;
}

void onMagIrq()
{
    magHFire++;
    tSend = 0;
}

void accDumpCfg()
{
    char start = CFG_ACC_ADR;
    for (int i = 0; i < CFG_ACC_LEN; i++)
    {
        cmd[0] = start + i;
        i2c.write(LSM303_ADR_ACC, cmd, 1);
        i2c.read(LSM303_ADR_ACC, &buf[i], 1);
    }
    printf("CFGACC: | ");
    for (int i = 0; i < CFG_ACC_LEN; i++)
    {
        printf("%02X ", buf[i]);
    }
    printf("|\r\n");
}

void magDumpCfg()
{
    char start = CFG_MAG_ADR;
    for (int i = 0; i < CFG_MAG_LEN; i++)
    {
        cmd[0] = start + i;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[i], 1);
    }
    printf("CFGMAG: | ");
    for (int i = 0; i < CFG_MAG_LEN; i++)
    {
        printf("%02X ", buf[i]);
    }
    printf("|\r\n");
}

// Clear any pending MAG IRQs
inline void magWipeIrq()
{
        cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &ret, 1);
}

/**
 * Entry point for application
 */
int main (void)
{
    //i2c.frequency(400000);
    wait(4);
    printf("\r\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\r\n");
 
    // Boot Flash
    for (int i = 0; i <= 64; i++)
    {
        myLedR = i & 0x01;
        myLedG = i & 0x02;
        myLedB = i & 0x04;
        myLedW = i & 0x08;
        wait(0.01);
    }
    wait(4);
//    btnPin.rise(&onBtnIrq);
    printf("Boot flash complete.\r\n");
    // setup tracing
    setup_trace();

    printf("Trace setup complete.\r\n");

    // stores the status of a call to LoRaWAN protocol
    lorawan_status_t retcode;
    
    printf("Pre-sensor init.\r\n");
    
    /* I2C init */
    ret = 0x00;
    magDumpCfg();
    accDumpCfg();
    magInitSequence();
    accInitSequence();
    
    // HUOT ADDITION -- 08/30/2018 -- RESET GPS TO DEFAULT BEFORE MOVING FORWARD
    gpsExecuteCommand(cmdResetDefaults, sizeof(cmdResetDefaults));
    
    gpsInitSequence();
    magDumpCfg();
    accDumpCfg();
    printf("Post-sensor init.\r\n");
    
    cfg = 0x00;
#if defined(TARGET_LRAT)
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cfg |= (ret & 0x80) >> 7;
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    accScale = 1 << (!(ret & 0x30) ? 0 : ((ret & 0x30) >> 4) - 1);
    cmd[0] = LSM303_REG_MAG_CTRL_REG2_M;
    i2c.write(LSM303_ADR_MAG, cmd, 1);
    i2c.read(LSM303_ADR_MAG, &ret, 1);
    cfg |= (ret & 0x60) >> 1;
    //accShift = 0; // Full 16-bit resolution
    accShift = 4;
#else
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cfg |= (ret & 0x08) >> 3;
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cfg |= (ret & 0x08) >> 2;
    accScale = 1 << ((ret & 0x30) >> 4);
    cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
    i2c.write(LSM303_ADR_MAG, cmd, 1);
    i2c.read(LSM303_ADR_MAG, &ret, 1);
    cfg |= (ret & 0x10);
    if (cfg & 0x01)
        accShift = 8;
    else if (cfg & 0x02)
        accShift = 4;
    else
        accShift = 6;
#endif
    printf("Quality: %02x AccShift: %d AccScale: %d\r\n", cfg, accShift, accScale);

    time_t tNow;
    /*
//    while(1)
//    {
        tNow = time(NULL);
        printf("RTC: %08X\r\n", tNow);
#if defined(SENSOR_TEMP)
        tmpRead();
#endif
        magRead();
        accRead();
        gpsRead();
        printf("TIM: %d, SAT: %d, LAT: %f, LON: %f\r\n", mytime, mybatt, mylat, mylon);
        printf("IRQ: A=%02X M=%02X B=%02X\r\n", accHFire, magHFire, btnHFire);
        wait(1);
//    }
    */
    
    for (int i = 0; i <= 64; i++)
    {
        myLedR = i & 0x01;
        myLedG = i & 0x02;
        myLedB = i & 0x04;
        myLedW = i & 0x08;
        wait(0.01);
    }
    
//    uint8_t crcA = 0;
//    uint8_t crcB = 0;
//    for(int i = 2; i <= 13; i++)
//    {
//        crcA = crcA + cmdStopGNSS[i];
//        crcB = crcB + crcA;
//    }
//    cmdStopGNSS[14] = crcA;
//    cmdStopGNSS[15] = crcB;
//    printf("UBX CRC: %02X %02X\r\n", crcA, crcB);
//    i2c.write(NEOM8M_ADR_GPS, cmdStopGNSS, 16);
//    ubxRead();
//    ubxRead();
//    ubxRead();
//    wait(1);
//    ubxRead();
//    return 0;
    
//  HUOT ADDITION -- 08/30/2018 -- MAIN LOOP TO TEST GPS SLEEP/WAKE FUNCTIONALITY -- GOT IT WORKING    
    int x = 0; 
    
//    printf("LPM INIT \r\n");
//    gpsExecuteCommand(lowPowerMode, sizeof(lowPowerMode));
//    
    printf("Putting to sleep... Good Luck ================ \r\n");
    gpsExecuteCommand(secondTimeSleep, sizeof(secondTimeSleep));
    
//    while(1)
//    {
//        if ((x != 0) && (x % 10 == 0))
//        {
//            printf("Waking up GPS... Good luck, Huot \r\n");
//            gpsExecuteCommand(secondTimeAwake, sizeof(secondTimeAwake));
//            
//            while (gpsRead() == 1);
//            
//            printf("GPS Fix is good! Going to sleep... \r\n");
//            gpsExecuteCommand(secondTimeSleep, sizeof(secondTimeSleep));
//        }
//        printf("Waiting 5 seconds... \r\n");
//        wait(5);
//        x++;
//        printf("=== New loop incoming === \r\n");
//    }
    
    // TEST SEND -- SPECTRUM ANALYZER
    printf("Will send packet in 10 seconds... \r\n");
        
    for (int i = 9; i > 0; i--)
    {
        wait(1);
        printf("%d ... \r\n", i);
    }
    
    wait(1);
    myLedG = 1;
    
    
    // Initialize LoRaWAN stack
    if (lorawan.initialize(&ev_queue) != LORAWAN_STATUS_OK) {
        printf("\r\n LoRa initialization failed! \r\n");
        return -1;
    }

    myLedG = 0;

    printf("\r\n Mbed LoRaWANStack initialized \r\n");
    printf("MBED_CONF_LORA_APP_PORT: %d\r\n", MBED_CONF_LORA_APP_PORT);
    printf("MBED_CONF_LORA_DUTY_CYCLE_ON: %d\r\n", MBED_CONF_LORA_DUTY_CYCLE_ON);

    // prepare application callbacks
    callbacks.events = mbed::callback(lora_event_handler);
    lorawan.add_app_callbacks(&callbacks);

    // Set number of retries in case of CONFIRMED messages
    if (lorawan.set_confirmed_msg_retries(CONFIRMED_MSG_RETRY_COUNTER)
                                          != LORAWAN_STATUS_OK) {
        printf("\r\n set_confirmed_msg_retries failed! \r\n\r\n");
        return -1;
    }

    printf("\r\n CONFIRMED message retries : %d \r\n",
           CONFIRMED_MSG_RETRY_COUNTER);

    // Enable adaptive data rate
    if (lorawan.enable_adaptive_datarate() != LORAWAN_STATUS_OK) {
        printf("\r\n enable_adaptive_datarate failed! \r\n");
        return -1;
    }

    printf("\r\n Adaptive data  rate (ADR) - Enabled \r\n");

    retcode = lorawan.connect();

    if (retcode == LORAWAN_STATUS_OK ||
        retcode == LORAWAN_STATUS_CONNECT_IN_PROGRESS) {
    } else {
        printf("\r\n Connection error, code = %d \r\n", retcode);
        return -1;
    }

    printf("\r\n Connection - In Progress ...\r\n");

    // make your event queue dispatching events forever
    //ev_queue.dispatch_forever();
    ev_queue.dispatch();
    printf("\r\n- = - = - = - = - = - DISPATCH 1 COMPLETE - = - = - = - = - = -\r\n");
    /*
    printf("CONTROL LOOP GOES HERE!\r\n");
#if defined(TARGET_LRAT)
#else
    for (int i = 0; i < 6; i++)
    {
        tNow = time(NULL);
        printf("RTC: %08X\r\n", tNow);
        tNext = tNow + 10;
        printf("NXT: %08X\r\n", tNext);
        // Clear any pending IRQs
        cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &ret, 1);
        while (time(NULL) < tNext)
        {
            wait(1);
        }
        printf("Timer #%d complete.\r\n", i);
    }
#endif
    */
    tSend = time(NULL) + 1;
    while (1) {
        continueSending = true;
        while (time(NULL) < tSend)
            wait(0.1);
        if (tSend == 0)
            tCalm = time(NULL) + (DPANIC * NPANIC);
        tSend = time(NULL) + (time(NULL) < tCalm ? DPANIC : DCHILL);
        magWipeIrq();
        printf("RTC: %08X\r\n", time(NULL));
        printf("IT'S PACKET TIME!\r\n");
        // HUOT ADDITION -- 08/31/2018 -- Implementation of the packet
        if (eepromCounter != 0)
        {
            int backsize = eepromCounter;
            printf("BACKLOG LOOP, FLUSHING %d ENTRIES\r\n", backsize);
            for (int i = 0; i < backsize && continueSending; i++)
            {
                printf("BACKLOG LOOP %d of %d\r\n", i, backsize);
                wasEEPROM = true;
                ev_queue.call(send_backlog);
                ev_queue.dispatch();
                printf("Backlog sent, waiting 5 secs.\r\n");
                wait(5);
                printf("\r\n EEPROM Backlog Sent out!");
                printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
                memset(tx_buffer, 0, sizeof(tx_buffer));
            }
            if (continueSending)
                printf("BACKLOG FLUSH COMPLETE!\r\n");
            else
                printf("BACKLOG FLUSH ABORTED!\r\n");
        }
        ev_queue.call(send_message);
        ev_queue.dispatch();
        printf("\r\n- = - = - = - = - = - DISPATCH 2 COMPLETE - = - = - = - = - = -\r\n");
    }

    return 0;
}

static void send_backlog()
{
    printf("In send_backlog()...\r\n");
    int16_t retcode;
    //time_t tNow = time(NULL);
    //printf("Clock: %d\r\n", tNow);
    weGetSignal = 0;
    printf("Head Cleared ACK flag: %d\r\n", weGetSignal);
    prepBacklogSend();
    retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, PACKET_LEN,
                        MSG_CONFIRMED_FLAG);
    if (retcode < 0) {
        retcode == LORAWAN_STATUS_WOULD_BLOCK ? printf("send - WOULD BLOCK\r\n")
                : printf("\r\n send() - Error code %d \r\n", retcode);
        if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
            //retry in 3 seconds
// HUOT NOTE -- WE SHOULD BE CAREFUL ABOUT THIS AS WITH THE EEPROM BACKLOG WE MAY BLOCK OURSELVES AND OVERFLOW THE STACK WITH SUBSEQUENT CALLS
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                ev_queue.call_in(3000, send_message);
            }
        }
        return;
    }
    printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
    //memset(tx_buffer, 0, sizeof(tx_buffer));
    
    
    //LED Confirmation Output - MESSAGE SENT
//    for (int i = 0; i < 10; i++) {
//            myLedG = 1;
//            wait(0.1);
//            myLedG = 0;
//            myLedR = 1;
//            wait(0.1);
//            myLedR = 0;
//            //myLedB = 1;
//            //wait(0.1);
//            //myLedB = 0;
//    }
}

/**
 * Sends a message to the Network Server
 */
static void send_message()
{
    printf("In send_message()...\r\n");
    int16_t retcode;

// HUOT NOTE -- 08/31/2018 -- Think this and all references to the "Dummy Sensor" can be removed at this point
//
//    float sensor_value;
//    if (ds1820.begin()) {
//        ds1820.startConversion();
//        sensor_value = ds1820.read();
//        printf("\r\n Dummy Sensor Value = %3.1f \r\n", sensor_value);
//        ds1820.startConversion();
//    } else {
//        printf("\r\n No sensor found \r\n");
//        return;
//    }

    //time_t tNow = time(NULL);
    //printf("Clock: %d\r\n", tNow);
    
    weGetSignal = 0;
    printf("Head Cleared ACK flag: %d\r\n", weGetSignal);
    
    #if defined(SENSOR_TEMP)
        tmpRead();
    #endif
        magRead();
        accRead();
        
        // HUOT ALTERATION -- 08/31/2018 -- Implement GPS Read Loop into Send Message
        // TODO - Implement 3 try counter (or something similar)
        printf("Waking up GPS... Good luck, Huot \r\n");
        gpsExecuteCommand(secondTimeAwake, sizeof(secondTimeAwake));
        
        //while (gpsRead() == 1);
        gpsRead();
        
        printf("GPS Fix is good! Going to sleep... \r\n");
        gpsExecuteCommand(secondTimeSleep, sizeof(secondTimeSleep));
        printf("~~~~~~~~~~~~~ Constructing Packet ~~~~~~~~~~~~~\r\n");
        
        int ilat = (int)(mylat * 100000);
        int ilon = (int)(mylon * 100000);
        printf("TIM: %d, SAT: %d, LAT: %d, LON: %d\r\n", mytime, mybatt, ilat, ilon);
        //    packet_len = 11;
        tx_buffer[0] = (mytime >> 24) & 0xFF;
        tx_buffer[1] = (mytime >> 16) & 0xFF;
        tx_buffer[2] = (mytime >> 8) & 0xFF;
        tx_buffer[3] = (mytime >> 0) & 0xFF;
        tx_buffer[4] = ((mybatt << 4) & 0xF0) | ((ilat >> 22) & 0x0F);
        tx_buffer[5] = (ilat >> 14) & 0xFF;
        tx_buffer[6] = (ilat >> 6) & 0xFF;
        tx_buffer[7] = ((ilat << 2) & 0xFC) | ((ilon >> 24) & 0x03);
        tx_buffer[8] = (ilon >> 16) & 0xFF;
        tx_buffer[9] = (ilon >> 8) & 0xFF;
        tx_buffer[10] = (ilon >> 0) & 0xFF;
        printf("\r\nBUF: |");
        for (int i = 0; i < PACKET_LEN; i++) { printf("%02X", tx_buffer[i]); }
        printf("|\r\n");
        
        // TEST SEND -- SPECTRUM ANALYZER
        printf("Will send packet in 10 seconds... \r\n");
        
        for (int i = 9; i > 0; i--)
        {
            wait(1);
            printf("%d ... \r\n", i);
        }
        wait(1);
        myLedG = 1; 
    
        retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, PACKET_LEN,
                               MSG_CONFIRMED_FLAG);
    
        if (retcode < 0) {
            retcode == LORAWAN_STATUS_WOULD_BLOCK ? printf("send - WOULD BLOCK\r\n")
                    : printf("\r\n send() - Error code %d \r\n", retcode);
    
            if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
                //retry in 3 seconds
// HUOT NOTE -- WE SHOULD BE CAREFUL ABOUT THIS AS WITH THE EEPROM BACKLOG WE MAY BLOCK OURSELVES AND OVERFLOW THE STACK WITH SUBSEQUENT CALLS
                if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                    ev_queue.call_in(3000, send_message);
                }
            }
            return;
        }
    
        printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
        //memset(tx_buffer, 0, sizeof(tx_buffer));
        
//        //LED Confirmation Output - MESSAGE SENT
//        for (int i = 0; i < 10; i++) {
//                myLedG = 1;
//                wait(0.1);
//                myLedG = 0;
//                myLedR = 1;
//                wait(0.1);
//                myLedR = 0;
//                myLedB = 1;
//                wait(0.1);
//                myLedB = 0;
//        }
}

/**
 * Receive a message from the Network Server
 */
static void receive_message()
{
    printf("In receive_message()...\r\n");
    int16_t retcode;
    retcode = lorawan.receive(MBED_CONF_LORA_APP_PORT, rx_buffer,
                              sizeof(rx_buffer),
                              MSG_CONFIRMED_FLAG|MSG_UNCONFIRMED_FLAG);

    if (retcode < 0) {
        printf("\r\n receive() - Error code %d \r\n", retcode);
        return;
    }

    printf(" Data:");

    for (uint8_t i = 0; i < retcode; i++) {
        printf("%x", rx_buffer[i]);
    }

    printf("\r\n Data Length: %d\r\n", retcode);

    /*
    int startLoop = 0;
    if (strncmp((char *)rx_buffer, cmdSendLoop, 8) == 0)
    {
        printf("SendLoop Command Received!\r\n");
        startLoop = 1;
    }
    */

    memset(rx_buffer, 0, sizeof(rx_buffer));
    /*
    if (startLoop)
        send_message();
    */
}

/**
 * Event handler
 */
static void lora_event_handler(lorawan_event_t event)
{
    tr_debug("In lora_event_handler(%d)...", event);
    switch (event) {
        case CONNECTED:
            printf("\r\n Connection - Successful \r\n");
            ev_queue.break_dispatch();
            /*
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            } else {
                ev_queue.call_every(TX_TIMER, send_message);
            }
            */
            break;
        case DISCONNECTED:
            ev_queue.break_dispatch();
            printf("\r\n Disconnected Successfully \r\n");
            break;
        case TX_DONE:
            printf("\r\n Message Sent to Network Server \r\n");
            printf("Dumping ACK Flag: %d\r\n", weGetSignal);
            if (weGetSignal == 0)
            {
                printf("No ACK received.\r\n");
                if (wasEEPROM)
                    continueSending = false;
                else
                    backupPacket();
            }
            if (wasEEPROM && weGetSignal)
            {
                eepromCounter--;
            }
            wasEEPROM = false;
            weGetSignal = 0;
            printf("Tail Cleared ACK Flag: %d\r\n", weGetSignal);
            ev_queue.break_dispatch();
            /*
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            */
            
            myLedG = 0;
            
            break;
        case TX_TIMEOUT:
        case TX_ERROR:
        case TX_CRYPTO_ERROR:
        case TX_SCHEDULING_ERROR:
            myLedR = 1;
            wait(1);
            
            printf("\r\n Transmission Error - EventCode = %d \r\n", event);
            
            // try again
            /*
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            */
            printf("====== Writing to EEPROM Backlog ====== \r\n");
            backupPacket();
            
            if (wasEEPROM)
                continueSending = false;
            
            myLedG = 0;
            myLedR = 0;
            
            break;
        case RX_DONE:
            printf("\r\n Received message from Network Server \r\n");
            receive_message();
            break;
        case RX_TIMEOUT:
        case RX_ERROR:
            printf("\r\n Error in reception - Code = %d \r\n", event);
            break;
        case JOIN_FAILURE:
            printf("\r\n OTAA Failed - Check Keys \r\n");
            break;
        case UPLINK_REQUIRED:
            printf("\r\n Uplink required by NS \r\n");
            /*
            if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
                send_message();
            }
            */
            break;
        default:
            MBED_ASSERT("Unknown Event");
    }
}

void magInitSequence()
{
    printf("In magInitSequence()...\r\n");
    myLedR = 0;
    myLedG = 0;
    cmd[0] = LSM303_REG_MAG_WHO_AM_I_M;
    i2c.write(LSM303_ADR_MAG, cmd, 1);
    i2c.read(LSM303_ADR_MAG, &ret, 1);
    res = (ret == LSM303_WHO_MAG ? sPass : sFail);
    printf("MAG WhoAmI: %02X %s\r\n", ret, res);
    
    if (ret == LSM303_WHO_MAG)
        myLedG = 1;
    else
        myLedR = 1;

    for (int i = 0; i < 2; i++) {
        myLedB = 1;
        wait(0.3);
        myLedB = 0;
        wait(0.3);
    }
    
#if defined(TARGET_LRAT)
    cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
    cmd[1] = 0x70;  // Ultra-High Performance Mode on XY axes, ODR=10Hz
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_CTRL_REG3_M;
    cmd[1] = 0x00;  // High Resolution? (Full-power), Continuous
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_CTRL_REG4_M;
    cmd[1] = 0x0C;  // Ultra-High Performance Mode on Z axis
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    #if defined(SENSOR_TEMP)
        // Enable Temp Sensor
        cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &ret, 1);
        cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
        cmd[1] = ret | 0x80;
        i2c.write(LSM303_ADR_MAG, cmd, 2);
        /*
        cmd[0] = LSM303_REG_MAG_CTRL_REG5_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &ret, 1);
        cmd[0] = LSM303_REG_MAG_CTRL_REG5_M;
        cmd[1] = ret | 0x40;
        i2c.write(LSM303_ADR_MAG, cmd, 2);
        */
    #endif
#else
    cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
    cmd[1] = 0x00;  // Mag = 10 Hz (high-resolution and continuous mode)
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_CFG_REG_C_M;
    //cmd[1] = 0x01;  // Mag data-ready interrupt enable
    cmd[1] = 0x40; // Mag enable interrupt on pin
    i2c.write(LSM303_ADR_MAG, cmd, 2);
#endif
    
    for (int i = 0; i < 2; i++) {
        myLedR = 1;
        myLedG = 1;
        myLedB = 1;
        wait(0.5);
        myLedR = 0;
        myLedG = 0;
        myLedB = 0;
        wait(0.5);
    }
#if defined(TARGET_LRAT)
    // LRAT MAG IRQ SETUP GOES HERE
#else
    // MAG INTERRUPT SETUP
    cmd[0] = LSM303_REG_MAG_INT_THS_L_REG_M;
    cmd[1] = 0xE8;
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_INT_THS_H_REG_M;
    cmd[1] = 0x03;
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    cmd[0] = LSM303_REG_MAG_INT_CTRL_REG_M;
    cmd[1] = 0xE7;
    i2c.write(LSM303_ADR_MAG, cmd, 2);
    magPin.rise(&onMagIrq);
#endif
}

void accInitSequence()
{
    printf("In accInitSequence()...\r\n");
    myLedR = 0;
    myLedG = 0;
    cmd[0] = LSM303_REG_ACC_WHO_AM_I_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    res = (ret == LSM303_WHO_ACC ? sPass : sFail);
    printf("ACC WhoAmI: %02X %s\r\n", ret, res);
    
    if (ret == LSM303_WHO_ACC)
        myLedG = 1;
    else
        myLedR = 1;
    
    for (int i = 0; i < 2; i++) {
        myLedB = 1;
        wait(0.3);
        myLedB = 0;
        wait(0.3);
    }
    
#if defined(TARGET_LRAT)
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    cmd[1] = 0xB7;  // High Resolution, ODR=100Hz, Enable XYZ Axes
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    
    // HUOT ADDITION -- 08/30/2018 -- Accelerometer Intterupt Init Sequence
    #if defined(ACC_INTERRUPT_ON)
        // ACC INTERRUPT SETUP
        // Enable Interrupt Pin
        cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
        i2c.write(LSM303_ADR_ACC, cmd, 1);
        i2c.read(LSM303_ADR_ACC, &ret, 1);
        
        // Configure Control Register 3
        cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
        cmd[1] = 0x08;
        // cmd[1] = ret | 0x40;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
    
        cmd[0] = LSM303_CTRL_REG7_A;
        i2c.write(LSM303_ADR_ACC, cmd, 1);
        i2c.read(LSM303_ADR_ACC, &ret, 1);
        
        // Latch Interrupt Enabling
        cmd[0] = LSM303_CTRL_REG7_A;
        cmd[1] = 0x04;
        //cmd[1] = ret | 0x08;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
        
        // Set Threshold/Duration/Config
        // Set Threshold on X axis
        cmd[0] = LSM303_REG_ACC_INT1_THS_X1_A;
        cmd[1] = 0x7D;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
        
        // Set Threshold on Y axis
        cmd[0] = LSM303_REG_ACC_INT1_THS_Y1_A;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
        
        // Set Y Threshold on Z axis
        cmd[0] = LSM303_REG_ACC_INT1_THS_Z1_A;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
        
        // Set Interrupt Duration
        cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
        cmd[1] = 0x00;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
        
        // Set Interrupt Configuration
        cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
        cmd[1] = 0x02;  // Set Interrupt Generation on X-Axis High event
        i2c.write(LSM303_ADR_ACC, cmd, 2);
        accPin.rise(&onAccIrq);
    #endif
    
#else
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    cmd[1] = 0x57;  // Enable XYZ Axes, ODR=100Hz
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    
    // Enable High Resolution Mode
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    cmd[1] = ret | 0x08;    // High Resolution
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    
    #if defined(SENSOR_TEMP)
        // Enable Temp Sensor
        cmd[0] = LSM303_REG_ACC_TEMP_CFG_REG_A;
        cmd[1] = 0xC0;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
        cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
        i2c.write(LSM303_ADR_ACC, cmd, 1);
        i2c.read(LSM303_ADR_ACC, &ret, 1);
        cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
        cmd[1] = ret | 0x80;
        i2c.write(LSM303_ADR_ACC, cmd, 2);
    #endif
#endif
    
    //LED Confirmation Output - ACC INIT COMPLETE
    for (int i = 0; i < 2; i++) {
        myLedR = 1;
        myLedG = 1;
        myLedB = 1;
        wait(0.5);
        myLedR = 0;
        myLedG = 0;
        myLedB = 0;
        wait(0.5);
    }
    
    // Set Full Scale to 4g
    /*
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    //cmd[1] = ret | 0x30;              // 16g
    //cmd[1] = (ret & ~0x10) | 0x20;    // 8g
    cmd[1] = (ret & ~0x20) | 0x10;      // 4g
    //cmd[1] = ret & ~0x30;             // 2g
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    */
/*
    // IRQ Init from Datasheet.
    cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
    cmd[1] = 0xA7;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_CTRL_REG2_A;
    cmd[1] = 0x00;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
    cmd[1] = 0x40;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
    cmd[1] = 0x00;
    //cmd[1] = 0x10;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
    cmd[1] = 0x08;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
*/
#if defined(TARGET_LRAT)
    // LRAT ACC IRQ SETUP GOES HERE
#else
    // ACC INTERRUPT SETUP
    // Enable Interrupt Pin
    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
    cmd[1] = ret | 0x40;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    // Enable Interrupt Latch
    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
    cmd[1] = ret | 0x08;
    i2c.write(LSM303_ADR_ACC, cmd, 2);

    // Set Threshold/Duration/Config
    cmd[0] = LSM303_REG_ACC_INT1_THS_A;
    //cmd[1] = 0x10;
    //cmd[1] = 0x40;
    //cmd[1] = 0x60;
    cmd[1] = 0x7D;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
    cmd[1] = 0x00;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
    cmd[1] = 0x2A;
    //cmd[1] = 0x0A;
    i2c.write(LSM303_ADR_ACC, cmd, 2);
    accPin.rise(&onAccIrq);
#endif
}

void gpsInitSequence()
{
    printf("In gpsInitSequence()...\r\n");
    gpsRead();
    if (mytime > 0)
    {
        set_time(mytime);
        tInit = mytime;
        myLedG = 1;
    }
    else
        myLedR = 1;
    
    for (int i = 0; i < 2; i++) {
        myLedB = 1;
        wait(0.3);
        myLedB = 0;
        wait(0.3);
    }
    myLedG = 0;
    myLedR = 0;
    
    // HUOT ADDITION -- GPS LOW POWER SETUP
    //printf("Disabling GLONASS... \r\n");
    //gpsExecuteCommand(cmdDisableGLONASS, sizeof(cmdDisableGLONASS)); // Disable GLONASS
    //printf("Disabling Time Pulse... \r\n");
    //gpsExecuteCommand(cmdDisableTimePulse, sizeof(cmdDisableTimePulse)); // Disable Time Pulse
    //printf("Configuring PMS... \r\n");
    //gpsExecuteCommand(cmdConfigPMS, sizeof(cmdConfigPMS)); // Configure Power Management Setup
    //printf("LPM Init Sequence Complete. \r\n");
}

// HUOT ADDITION 08/30/2018 -- GENERIC GPS EXECUTE COMMAND FUNCTION
void gpsExecuteCommand(char *command, int length)
{
    
    uint8_t crcA = 0;
    uint8_t crcB = 0;
    for(int i = 2; i <= (length - 3); i++)
    {
        crcA = crcA + command[i];
        crcB = crcB + crcA;
    }
    
    command[(length - 2)] = crcA;
    command[(length - 1)] = crcB;
    printf("UBX CRC: %02X %02X\r\n", crcA, crcB);
    i2c.write(NEOM8M_ADR_GPS, command, length);
    printf("Command Executed \r\n");
    wait(1);
}

void magRead()
{
    cmd[0] = LSM303_REG_MAG_STATUS_REG_M;
    i2c.write(LSM303_ADR_MAG, cmd, 1);
    i2c.read(LSM303_ADR_MAG, &rda, 1);
    if (rda)
    {
        cmd[0] = LSM303_REG_MAG_OUTX_L_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[0], 1);
        cmd[0] = LSM303_REG_MAG_OUTX_H_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[1], 1);
        cmd[0] = LSM303_REG_MAG_OUTY_L_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[2], 1);
        cmd[0] = LSM303_REG_MAG_OUTY_H_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[3], 1);
        cmd[0] = LSM303_REG_MAG_OUTZ_L_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[4], 1);
        cmd[0] = LSM303_REG_MAG_OUTZ_H_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[5], 1);
        myMagX = (buf[0] | (buf[1] << 8));
        myMagY = (buf[2] | (buf[3] << 8));
        myMagZ = (buf[4] | (buf[5] << 8));
        if (myMagX < magMinX)
            magMinX = myMagX;
        if (myMagY < magMinY)
            magMinY = myMagY;
        if (myMagZ < magMinZ)
            magMinZ = myMagZ;
        if (myMagX > magMaxX)
            magMaxX = myMagX;
        if (myMagY > magMaxY)
            magMaxY = myMagY;
        if (myMagZ > magMaxZ)
            magMaxZ = myMagZ;
        cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &ret, 1);
        if (ret & 0x01 && magEvent == 0 && ret & 0xFC)
        {
            magSFire++;
            magEvent = 1;
            magSHIRQ++;
        }
        else if (!(ret & 0x01) && magEvent == 1 && !(ret & 0xFC))
        {
            magSFire++;
            magEvent = 0;
            magSLIRQ++;
        }
        printf("M|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myMagX, 6, myMagY, 6, myMagZ, 6, magMinX, 6, magMinY, 6, magMinZ, 6, magMaxX, 6, magMaxY, 6, magMaxZ, ret, magSHIRQ, magSLIRQ, magSFire, magHFire);
    }
}

void accRead()
{
    cmd[0] = LSM303_REG_ACC_STATUS_REG_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &rda, 1);
    if (rda)
    {
    cmd[0] = LSM303_REG_ACC_OUT_X_L_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[0], 1);
    cmd[0] = LSM303_REG_ACC_OUT_X_H_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[1], 1);
    cmd[0] = LSM303_REG_ACC_OUT_Y_L_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[2], 1);
    cmd[0] = LSM303_REG_ACC_OUT_Y_H_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[3], 1);
    cmd[0] = LSM303_REG_ACC_OUT_Z_L_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[4], 1);
    cmd[0] = LSM303_REG_ACC_OUT_Z_H_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &buf[5], 1);
    myAccX = ((int16_t)(buf[0] | (buf[1] << 8)) >> accShift);
    myAccY = ((int16_t)(buf[2] | (buf[3] << 8)) >> accShift);
    myAccZ = ((int16_t)(buf[4] | (buf[5] << 8)) >> accShift);
    if (myAccX < accMinX)
        accMinX = myAccX;
    if (myAccY < accMinY)
        accMinY = myAccY;
    if (myAccZ < accMinZ)
        accMinZ = myAccZ;
    if (myAccX > accMaxX)
        accMaxX = myAccX;
    if (myAccY > accMaxY)
        accMaxY = myAccY;
    if (myAccZ > accMaxZ)
        accMaxZ = myAccZ;
    cmd[0] = LSM303_REG_ACC_INT1_SRC_A;
    i2c.write(LSM303_ADR_ACC, cmd, 1);
    i2c.read(LSM303_ADR_ACC, &ret, 1);
    if (ret & 0x40)
    {
        accSFire++;
        if (accEvent == 1)
        {
            accEvent = 0;
            accSLIRQ++;
            cmd[0] = LSM303_REG_ACC_INT1_THS_A;
            cmd[1] = 0x7D;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
            cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
            cmd[1] = 0x00;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
            cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
            cmd[1] = 0x2A;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
        }
        else
        {
            accEvent = 1;
            accSHIRQ++;
            cmd[0] = LSM303_REG_ACC_INT1_THS_A;
            cmd[1] = 0x50;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
            cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
            //cmd[1] = 0x7D;
            cmd[1] = 0x03;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
            cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
            cmd[1] = 0x95;
            i2c.write(LSM303_ADR_ACC, cmd, 2);
        }
    }
    printf("A|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myAccX, 6, myAccY, 6, myAccZ, 6, accMinX, 6, accMinY, 6, accMinZ, 6, accMaxX, 6, accMaxY, 6, accMaxZ, ret, accSHIRQ, accSLIRQ, accSFire, accHFire);
    }
}

void tmpRead()
{
    #if defined(TARGET_LRAT)
        cmd[0] = LSM303_REG_MAG_TEMP_L_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[0], 1);
        cmd[0] = LSM303_REG_MAG_TEMP_H_M;
        i2c.write(LSM303_ADR_MAG, cmd, 1);
        i2c.read(LSM303_ADR_MAG, &buf[1], 1);
        myTemp = (int16_t)(buf[0] | (buf[1] << 8));
        printf("T|%02X %02X| (%d)\r\n", buf[0], buf[1], myTemp);
    #else
        cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
        i2c.write(LSM303_ADR_ACC, cmd, 1);
        i2c.read(LSM303_ADR_ACC, &rda, 1);
        if (rda & 0x04)
        {
            cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
            i2c.write(LSM303_ADR_ACC, cmd, 1);
            i2c.read(LSM303_ADR_ACC, &buf[0], 2);
            myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
            printf("T|%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
        }
    #endif
}


// HUOT ALTERATION -- 08/30/2018 -- Change GPS read from "void" to return "int" to solidfy if fix was good or bad
int gpsRead()
{
    bool gpsDone = false;
    bool fixGood = false;
    uint8_t crcPass = 0;
    uint8_t crcFail = 0;
    uint32_t tDate = 0;
    uint32_t tTime = 0;
    myLedW = 1;
    pos = 0;
    ret = 0xFF;
    cmd[0] = 0xFF;
    i2c.write(NEOM8M_ADR_GPS, cmd, 1);
    while(!gpsDone)
    {
        while (ret == 0xFF)
        {
            i2c.read(NEOM8M_ADR_GPS, &ret, 1);
        }   
        while (ret != 0xFF)
        {
            buf[pos++] = ret;
            i2c.read(NEOM8M_ADR_GPS, &ret, 1);
            if (ret == '\r')
            {
                i2c.read(NEOM8M_ADR_GPS, &ret, 1);
                if (ret == '\n')
                {
                    buf[pos] = 0x00;
                    // NMEA Validation
                    uint16_t crc = 0;
                    char clr = '\0';
                    if (buf[0] == '$' && buf[pos-3] == '*')
                    {
                        for (int i = 1; i < pos-3; i++)
                        {
                            crc ^= buf[i];
                        }
                    }
                    if (crc == ((buf[pos-2] < 'A' ? buf[pos-2] - '0' : buf[pos-2] - '7') << 4 | (buf[pos-1] < 'A' ? buf[pos-1] - '0' : buf[pos-1] - '7')))
                    {
                        clr = '2'; // 2 = Green
                        crcPass++;
                    }
                    else
                    {
                        clr = '1'; // 1 = Red
                        crcFail++;
                    }
                    printf("GPS: [\u001b[3%cm%02X\u001b[0m] |%s|\r\n", clr, crc, buf);
                    if (clr == '2')
                    {
                    // Global Positioning System Fix Data
                    if(strncmp(buf, "$GNGGA", 6) == 0)
                    {
                        printf("GNGGA> ");
                        //sscanf(cmd, "$GPGGA,%f,%f,%c,%f,%c,%d,%d,%*f,%f", &timefix, &latitude, &ns, &longitude, &ew, &fq, &nst, &altitude);
                        //pc.printf("GPGGA Fix taken at: %f, Latitude: %f %c, Longitude: %f %c, Fix quality: %d, Number of sat: %d, Altitude: %f M\n", timefix, latitude, ns, longitude, ew, fq, nst, altitude);
                        float fldTim, fldAlt;
                        double fldLat, fldLon;
                        char fldN_S, fldE_W;
                        int fldFix, fldSat;
                        if (sscanf(buf, "$GNGGA,%f,%lf,%c,%lf,%c,%d,%d,%*f,%f", &fldTim, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldFix, &fldSat, &fldAlt) == 8)
                            printf("Sec: %.2f, Lat: %.5f %c, Lon: %.5f %c, Fix: %d, Sat: %d, Alt: %.1f M\r\n", fldTim, fldLat, fldN_S, fldLon, fldE_W, fldFix, fldSat, fldAlt);
                        if (clr == '2')
                        {
                            mylat = fldLat / (fldN_S == 'S' ? -100 : 100);
                            mylon = fldLon / (fldE_W == 'W' ? -100 : 100);
                            //mytime = (uint32_t)fldTim;
                            mybatt = (fldSat & 0xF0 ? 0x0F : fldSat & 0x0F);
                        }
                    }
                    // Satellite status
                    if(strncmp(buf, "$GNGSA", 6) == 0)
                    {
                        //printf("GNGSA> ");
                        //sscanf(cmd, "$GPGSA,%c,%d,%d", &tf, &fix, &nst);
                        //pc.printf("GPGSA Type fix: %c, 3D fix: %d, number of sat: %d\r\n", tf, fix, nst);
                        char fldTyp;
                        int fldDim, fldSat;
                        sscanf(buf, "$GNGSA,%c,%d,%d", &fldTyp, &fldDim, &fldSat);
                        //printf("Typ: %c, Pos: %d, Sat: %d\r\n", fldTyp, fldDim, fldSat);
                    }
                    // Geographic position, Latitude and Longitude
                    if(strncmp(buf, "$GNGLL", 6) == 0)
                    {
                        //printf("GNGLL> ");
                        //sscanf(cmd, "$GPGLL,%f,%c,%f,%c,%f", &latitude, &ns, &longitude, &ew, &timefix);
                        //pc.printf("GPGLL Latitude: %f %c, Longitude: %f %c, Fix taken at: %f\n", latitude, ns, longitude, ew, timefix);
                        float fldTim;
                        double fldLat, fldLon;
                        char fldN_S, fldE_W;
                        sscanf(buf, "$GNGLL,%lf,%c,%lf,%c,%f", &fldLat, &fldN_S, &fldLon, &fldE_W, &fldTim);
                        //printf("Lat: %.5f %c, Lon: %.5f %c, Sec: %.2f\r\n", fldLat, fldN_S, fldLon, fldE_W, fldTim);
                    }
                    // Geographic position, Latitude and Longitude
                    if(strncmp(buf, "$GNRMC", 6) == 0)
                    {
                        //printf("GPS: [\u001b[3%cm%02X\u001b[0m] |%s|\r\n", clr, crc, buf);
                        printf("GNRMC> ");
                        //sscanf(cmd, "$GPRMC,%f,%c,%f,%c,%f,%c,%f,,%d", &timefix, &status, &latitude, &ns, &longitude, &ew, &speed, &date);
                        //pc.printf("GPRMC Fix taken at: %f, Status: %c, Latitude: %f %c, Longitude: %f %c, Speed: %f, Date: %d\n", timefix, status, latitude, ns, longitude, ew, speed, date);
                        float fldTim, fldSpd, fldTrk;
                        fldTrk = 0;
                        double fldLat, fldLon;
                        char fldSts, fldN_S, fldE_W;
                        uint32_t fldDat;
                        if (sscanf(buf, "$GNRMC,,%c", &fldSts) != 1 && 
                            sscanf(buf, "$GNRMC,%f,%c,,,,,,,%d", &fldTim, &fldSts, &fldDat) != 3 && 
                            sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,,%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, &fldDat) != 8 &&
                            sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,%f,%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, &fldTrk, &fldDat) != 9)
                            printf("[\u001b[33mWARN\u001b[0m] Invalid GNRMC packet detected.\r\n");
                        //sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,%7[^,],%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, fldFoo, &fldDat);
                        printf("Sec: %.2f, Sts: %c, Lat: %.5f %c, Lon: %.5f %c, Spd: %.3f, Dat: %06d\r\n", fldTim, fldSts, fldLat, fldN_S, fldLon, fldE_W, fldSpd, fldDat);
                        if (clr == '2')
                        {
                            tTime = (uint32_t)fldTim;
                            tDate = fldDat;
                            if (fldSts == 'A')
                                fixGood = true;
                        }
                    }
                    }
                    pos = 0;
                    i2c.read(NEOM8M_ADR_GPS, &ret, 1);
                }
                else
                {
                    printf("[\u001b[33mWARN\u001b[0m] Expected '0A', received '%02X'.\r\n", ret);
                }
            }
            //else if (pos == 82)
            else if (pos == 191)
            {
                buf[pos] = 0x00;
                printf("GPS: |%s| ...\r\n", buf);
                pos = 0;
                i2c.read(NEOM8M_ADR_GPS, &ret, 1);
            }
        }
        buf[pos] = 0x00;
        gpsDone = true;
    }
    if (pos > 0)
        printf("GPS: |%s|\r\n", buf);
    myLedW = 0;
    if (crcFail)
        printf("[\u001b[33mWARN\u001b[0m] CRC PASS: %d FAIL: %d\r\n", crcPass, crcFail);

    struct tm ts;
    time_t t;
    
    uint8_t tDay = tDate / 10000;
    uint8_t tMon = (tDate - (tDay * 10000)) / 100;
    uint8_t tYear = (tDate - ((tDay * 10000) + (tMon * 100))) + 100;
    uint8_t tHour = tTime / 10000;
    uint8_t tMin = (tTime - (tHour * 10000)) / 100;
    uint8_t tSec = (tTime - ((tHour * 10000) + (tMin * 100)));
    
    ts.tm_year = tYear;
    ts.tm_mon = tMon - 1;
    ts.tm_mday = tDay;
    ts.tm_hour = tHour;
    ts.tm_min = tMin;
    ts.tm_sec = tSec;
    t = mktime(&ts);
    //printf("DAT: %06d TIM: %d\r\n", tDate, tTime);
    //printf("CNV: %04d-%02d-%02d@%02d:%02d:%02d\r\n", tYear, tMon, tDay, tHour, tMin, tSec);
    //printf("T: %d\t%s", t, ctime(&t));
    printf("GPS: %08X\t%s", t, ctime(&t));
    mytime = t;

    
//    if (fixGood)
//        myLedG = 1;
//    else
//        myLedR = 1;
//
//    for (int i = 0; i < 10; i++) {
//        myLedB = 1;
//        wait(0.1);
//        myLedB = 0;
//        wait(0.1);
//    }

    
    if (fixGood)
        return 0;
    else
        return 1;
}

void ubxRead()
{
    uint8_t crcPass = 0;
    uint8_t crcFail = 0;
    
    myLedW = 1;
    pos = 0;
    ret = 0xFF;
    cmd[0] = 0xFF;
    i2c.write(NEOM8M_ADR_GPS, cmd, 1);
    while (ret == 0xFF)
    {
        i2c.read(NEOM8M_ADR_GPS, &ret, 1);
    }   
    while (ret != 0xFF)
    {
        buf[pos++] = ret;
        i2c.read(NEOM8M_ADR_GPS, &ret, 1);
    }
    printf("UBX: | ");
    for (int i = 0; i <= pos; i++) { printf("%02X ", buf[i]); }
    printf("|\r\n", buf);
    myLedW = 0;
    //if (crcFail)
    //    printf("[\u001b[33mWARN\u001b[0m] CRC PASS: %d FAIL: %d\r\n", crcPass, crcFail);
    
    if (pos > 0)
        myLedG = 1;
    else
        myLedR = 1;

    for (int i = 0; i < 10; i++) {
        myLedB = 1;
        wait(0.1);
        myLedB = 0;
        wait(0.1);
    }
}

// HUOT ADDITION -- 08/31/2018 -- Write Packet to EEPROM (on failed send)
void backupPacket()
{
    printf("====== IN BACKUP PACKET METHOD ======= \r\n");
    int location = eepromCounter * 11;
    printf("Writing entry #%d to 0x%08d\r\n", eepromCounter, location);
    printf("BUF: |");
    for (int i = 0; i < PACKET_LEN; i++) { printf("%02X", tx_buffer[i]); }
    printf("|\r\n");
    for (int i = 0; i < 11; i++)
    {
        writeEEPROMByte(location++, tx_buffer[i]);
    }
    eepromCounter++;
}

// HUOT ADDITION -- 08/31/2018 -- Read EEPROM Memory into Buffer
void prepBacklogSend()
{
    printf("====== IN PREP BACKLOG SEND METHOD ======= \r\n");
    int location = (eepromCounter - 1) * 11;
    printf("Reading entry #%d from 0x%08d\r\n", eepromCounter - 1, location);
    for (int i = 0; i < 11; i++)
    {
        tx_buffer[i] = readEEPROMByte(location++);
    }
    printf("BUF: |");
    for (int i = 0; i < PACKET_LEN; i++) { printf("%02X", tx_buffer[i]); }
    printf("|\r\n");
}

// EOF