Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: Custom_LSM303 Custom_UBloxGPS LRAT-mbed-os USBDevice mbed-lora-radio-drv stm32EEPROM
Fork of LRAT-example-lorawan by
main.cpp
- Committer:
- Huot87
- Date:
- 2018-08-30
- Revision:
- 39:6da6cb44f22e
- Parent:
- 38:fd7a407bfe3e
- Child:
- 40:eaf476b94684
File content as of revision 39:6da6cb44f22e:
/**
* Copyright (c) 2017, Arm Limited and affiliates.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define TARGET_LRAT 1
#define TARGET_DISCO1 1
//#define TARGET_DISCO2 1
//#define SENSOR_TEMP 1
#define DCHILL 600 // Cycle delay in chill mode.
#define DPANIC 60 // Cycle delay in panic mode.
#define NPANIC 5 // Number of unprovoked panic cycles before cooldown.
#include <stdio.h>
#include "mbed.h"
#include "lorawan/LoRaWANInterface.h"
#include "lorawan/system/lorawan_data_structures.h"
#include "events/EventQueue.h"
// Application helpers
#include "DummySensor.h"
#include "trace_helper.h"
#include "lora_radio_helper.h"
#include "mbed-trace/mbed_trace.h"
#define TRACE_GROUP "MAIN"
using namespace events;
// Max payload size can be LORAMAC_PHY_MAXPAYLOAD.
// This example only communicates with much shorter messages (<30 bytes).
// If longer messages are used, these buffers must be changed accordingly.
uint8_t tx_buffer[30];
uint8_t rx_buffer[30];
/*
* Sets up an application dependent transmission timer in ms. Used only when Duty Cycling is off for testing
*/
#define TX_TIMER 10000
/**
* Maximum number of events for the event queue.
* 10 is the safe number for the stack events, however, if application
* also uses the queue for whatever purposes, this number should be increased.
*/
#define MAX_NUMBER_OF_EVENTS 10
/**
* Maximum number of retries for CONFIRMED messages before giving up
*/
#define CONFIRMED_MSG_RETRY_COUNTER 15
/**
* Dummy pin for dummy sensor
*/
#define PC_9 0
/**
* Dummy sensor class object
*/
DS1820 ds1820(PC_9);
/**
* This event queue is the global event queue for both the
* application and stack. To conserve memory, the stack is designed to run
* in the same thread as the application and the application is responsible for
* providing an event queue to the stack that will be used for ISR deferment as
* well as application information event queuing.
*/
static EventQueue ev_queue(MAX_NUMBER_OF_EVENTS * EVENTS_EVENT_SIZE);
/**
* Event handler.
*
* This will be passed to the LoRaWAN stack to queue events for the
* application which in turn drive the application.
*/
static void lora_event_handler(lorawan_event_t event);
/**
* Constructing Mbed LoRaWANInterface and passing it down the radio object.
*/
static LoRaWANInterface lorawan(radio);
/**
* Application specific callbacks
*/
static lorawan_app_callbacks_t callbacks;
/*
#if defined(TARGET_LRAT) or defined(TARGET_DISCO2)
#include "USBSerial.h"
USBSerial serial;
FileHandle* mbed::mbed_override_console(int) {
return &serial;
}
#endif
*/
uint32_t mytime = 0;
uint8_t mybatt = 0;
double mylat = 0;
double mylon = 0;
int16_t myAccX = 0;
int16_t myAccY = 0;
int16_t myAccZ = 0;
int16_t myMagX = 0;
int16_t myMagY = 0;
int16_t myMagZ = 0;
int16_t myOffX = 0;
int16_t myOffY = 0;
int16_t myOffZ = 0;
int16_t myTemp = 0;
int16_t accMinX = 0;
int16_t accMinY = 0;
int16_t accMinZ = 0;
int16_t accMaxX = 0;
int16_t accMaxY = 0;
int16_t accMaxZ = 0;
int16_t magMinX = 0;
int16_t magMinY = 0;
int16_t magMinZ = 0;
int16_t magMaxX = 0;
int16_t magMaxY = 0;
int16_t magMaxZ = 0;
#define NEOM8M_ADR_GPS 0x84
//#define LSM303_ADR_ACC 0x32
#define LSM303_ADR_MAG 0x3C
#define NEOM8M_REG_GPS_LENH 0xFD
#define NEOM8M_REG_GPS_LENL 0xFE
#define NEOM8M_REG_GPS_DATA 0xFE
#define LSM303_REG_ACC_STATUS_REG_AUX_A 0x07
//#define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
//#define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
#define LSM303_REG_ACC_WHO_AM_I_A 0x0F
//#define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
#define LSM303_REG_ACC_CTRL_REG1_A 0x20
#define LSM303_REG_ACC_CTRL_REG2_A 0x21
#define LSM303_REG_ACC_CTRL_REG3_A 0x22
#define LSM303_REG_ACC_CTRL_REG4_A 0x23
#define LSM303_REG_ACC_CTRL_REG5_A 0x24
#define LSM303_REG_ACC_CTRL_REG6_A 0x25
#define LSM303_REG_ACC_STATUS_REG_A 0x27
#define LSM303_REG_ACC_OUT_X_L_A 0x28
#define LSM303_REG_ACC_OUT_X_H_A 0x29
#define LSM303_REG_ACC_OUT_Y_L_A 0x2A
#define LSM303_REG_ACC_OUT_Y_H_A 0x2B
#define LSM303_REG_ACC_OUT_Z_L_A 0x2C
#define LSM303_REG_ACC_OUT_Z_H_A 0x2D
#define LSM303_REG_ACC_INT1_CFG_A 0x30
#define LSM303_REG_ACC_INT1_SRC_A 0x31
#define LSM303_REG_ACC_INT1_THS_A 0x32
#define LSM303_REG_ACC_INT1_DURATION_A 0x33
#define LSM303_REG_MAG_OFFSET_X_REG_L_M 0x45
#define LSM303_REG_MAG_OFFSET_X_REG_H_M 0x46
#define LSM303_REG_MAG_OFFSET_Y_REG_L_M 0x47
#define LSM303_REG_MAG_OFFSET_Y_REG_H_M 0x48
#define LSM303_REG_MAG_OFFSET_Z_REG_L_M 0x49
#define LSM303_REG_MAG_OFFSET_Z_REG_H_M 0x4A
//#define LSM303_REG_MAG_WHO_AM_I_M 0x4F
//#define LSM303_REG_MAG_CFG_REG_A_M 0x60
//#define LSM303_REG_MAG_CFG_REG_B_M 0x61
//#define LSM303_REG_MAG_CFG_REG_C_M 0x62
#define LSM303_REG_MAG_INT_CTRL_REG_M 0x63
#define LSM303_REG_MAG_INT_SOURCE_REG_M 0x64
#define LSM303_REG_MAG_INT_THS_L_REG_M 0x65
#define LSM303_REG_MAG_INT_THS_H_REG_M 0x66
//#define LSM303_REG_MAG_STATUS_REG_M 0x67
//#define LSM303_REG_MAG_OUTX_L_REG_M 0x68
//#define LSM303_REG_MAG_OUTX_H_REG_M 0x69
//#define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
//#define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
//#define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
//#define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D
#define EEPROM_MAX 0x17FF
#if defined(TARGET_LRAT)
#define LEDR PB_6
#define LEDG PB_7
#define LEDB PB_5
#define LEDW PB_2
#define PIN_ACC PB_14
#define PIN_MAG PB_12
#define PIN_BTN PA_5
#define PIN_ALT PA_4
#define LSM303_ADR_ACC 0x3A
#define LSM303_REG_MAG_WHO_AM_I_M 0x0F
#define LSM303_WHO_ACC 0x41
#define LSM303_WHO_MAG 0x3D
#define LSM303_CTRL_REG7_A 0x26
#define LSM303_REG_MAG_CTRL_REG1_M 0x20
#define LSM303_REG_MAG_CTRL_REG2_M 0x21
#define LSM303_REG_MAG_CTRL_REG3_M 0x22
#define LSM303_REG_MAG_CTRL_REG4_M 0x23
#define LSM303_REG_MAG_CTRL_REG5_M 0x24
#define LSM303_REG_MAG_STATUS_REG_M 0x27
#define LSM303_REG_MAG_OUTX_L_REG_M 0x28
#define LSM303_REG_MAG_OUTX_H_REG_M 0x29
#define LSM303_REG_MAG_OUTY_L_REG_M 0x2A
#define LSM303_REG_MAG_OUTY_H_REG_M 0x2B
#define LSM303_REG_MAG_OUTZ_L_REG_M 0x2C
#define LSM303_REG_MAG_OUTZ_H_REG_M 0x2D
#define LSM303_REG_MAG_TEMP_L_M 0x2E
#define LSM303_REG_MAG_TEMP_H_M 0x2F
#define LSM303_REG_MAG_TEMP_CFG_REG_A 0x1F
#define CFG_ACC_ADR LSM303_REG_ACC_CTRL_REG1_A
#define CFG_ACC_LEN 7
#define CFG_MAG_ADR LSM303_REG_MAG_CTRL_REG1_M
#define CFG_MAG_LEN 5
// HUOT ADDITIONS -- 08/30/2018 -- Port of LRAT LSM303CTR ACC Register definitions
// LSM303CTR Specific ACC Register ID's
#define LSM303_REG_ACC_INT1_THS_X1_A 0x32
#define LSM303_REG_ACC_INT1_THS_Y1_A 0x33
#define LSM303_REG_ACC_INT1_THS_Z1_A 0x34
#define LSM303_REG_ACC_INT1_DURATION_A 0x35
#define LSM303_REG_ACC_INT2_CFG_A 0x36
#define LSM303_REG_ACC_INT2_SRC_A 0x37
#define LSM303_REG_ACC_INT2_THS_A 0x38
#define LSM303_REG_ACC_INT2_DURATION_A 0x39
#define LSM303_REG_ACC_XL_REFERENCE 0x3A
#define LSM303_REG_ACC_XH_REFERENCE 0x3B
#define LSM303_REG_ACC_YL_REFERENCE 0x3C
#define LSM303_REG_ACC_YH_REFERENCE 0x3D
#define LSM303_REG_ACC_ZL_REFERENCE 0x3E
#define LSM303_REG_ACC_ZH_REFERENCE 0x3F
#else
#define LEDR PB_7
#define LEDG PB_5
#define LEDB PB_6
#define LEDW PA_5
#define PIN_ACC PB_14 // Not really.
#if defined(TARGET_DISCO2)
#define PIN_MAG PB_13
#define PIN_GPS PA_10
#else
#define PIN_MAG PA_10
#define PIN_GPS PB_13
#endif
#define PIN_BTN PB_2
#define LSM303_ADR_ACC 0x32
#define LSM303_REG_MAG_WHO_AM_I_M 0x4F
#define LSM303_WHO_ACC 0x33
#define LSM303_WHO_MAG 0x40
#define LSM303_REG_ACC_OUT_TEMP_L_A 0x0C
#define LSM303_REG_ACC_OUT_TEMP_H_A 0x0D
#define LSM303_REG_ACC_TEMP_CFG_REG_A 0x1F
#define LSM303_REG_MAG_CFG_REG_A_M 0x60
#define LSM303_REG_MAG_CFG_REG_B_M 0x61
#define LSM303_REG_MAG_CFG_REG_C_M 0x62
#define LSM303_REG_MAG_STATUS_REG_M 0x67
#define LSM303_REG_MAG_OUTX_L_REG_M 0x68
#define LSM303_REG_MAG_OUTX_H_REG_M 0x69
#define LSM303_REG_MAG_OUTY_L_REG_M 0x6A
#define LSM303_REG_MAG_OUTY_H_REG_M 0x6B
#define LSM303_REG_MAG_OUTZ_L_REG_M 0x6C
#define LSM303_REG_MAG_OUTZ_H_REG_M 0x6D
#define CFG_ACC_ADR LSM303_REG_ACC_TEMP_CFG_REG_A // Start Disco at TEMP CFG.
#define CFG_ACC_LEN 7
#define CFG_MAG_ADR LSM303_REG_MAG_CFG_REG_A_M
#define CFG_MAG_LEN 3
#endif
I2C i2c(PB_9, PB_8);
InterruptIn accPin(PIN_ACC);
InterruptIn magPin(PIN_MAG);
InterruptIn btnPin(PIN_BTN);
#if defined(TARGET_DISCO1) or defined(TARGET_DISCO2)
DigitalOut gpsPin(PIN_GPS);
#endif
uint8_t cfg;
char ret;
char rda = '\0';
char cmd[2];
//char buf[83];
char buf[192];
uint8_t pos = 0;
int accShift = 0;
int accScale = 0;
int accEvent = 0;
uint8_t accSFire = 0;
uint8_t accHFire = 0;
uint8_t accSLIRQ = 0;
uint8_t accSHIRQ = 0;
int magEvent = 0;
uint8_t magSFire = 0;
uint8_t magHFire = 0;
uint8_t magSLIRQ = 0;
uint8_t magSHIRQ = 0;
uint8_t btnHFire = 0;
char *res;
char sPass[26] = "[\u001b[32mPASS\u001b[0m]";
char sFail[26] = "[\u001b[31mFAIL\u001b[0m]";
char cmdSendLoop[9] = "SendLoop";
//char cmdStopGNSS[14] = {0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x53, 0x54, 0x4F, 0x50};
//#define CMDSTOPGNSS {0xFF, 0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x53, 0x54, 0x4F, 0x50}
//char cmdStopGNSS[16] {0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // Leave 2 bytes for CRC.
//char cmdStopGNSS[16] {0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x01, 0x00, 0x00, 0x00, 0x53, 0x54, 0x4F, 0x50}; // Leave 2 bytes for CRC.
char cmdStopGNSS[16] {0xB5, 0x62, 0x06, 0x57, 0x08, 0x00, 0x01, 0x00, 0x00, 0x00, 0x50, 0x4F, 0x54, 0x53}; // Leave 2 bytes for CRC. // Note Byte character is Little Endian from what doc says
char cmdReadGNSS[8] {0xB5, 0x62, 0x06, 0x57, 0x00, 0x00};
char cmdReadCfgU[8] {0xB5, 0x62, 0x06, 0x1B, 0x00, 0x00}; // Leave 2 bytes for CRC.
char cmdPollPort[9] {0xB5, 0x62, 0x06, 0x00, 0x01, 0x00, 0x00};
// HUOT ADDITIONS - 08/29/18 -- ADDED UBX-CFG CHAR BUFFERS -- BOTTOM TWO WORK!
// UBX-CFG-GNSS -- Disable Glonass (also leave 2 bytes)
char cmdDisableGLONASS[68] {0xB5, 0x62, 0x06, 0x3E, 0x3C, 0x00, 0x00, 0x20, 0x20, 0x07, 0x00, 0x08, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01, 0x01, 0x01, 0x03, 0x00, 0x01, 0x00, 0x01, 0x01, 0x02, 0x04, 0x08, 0x00, 0x00, 0x00, 0x01, 0x01, 0x03, 0x08, 0x10, 0x00, 0x00, 0x00, 0x01, 0x01, 0x04, 0x00, 0x08, 0x00, 0x00, 0x00, 0x01, 0x03, 0x05, 0x00, 0x03, 0x00, 0x01, 0x00, 0x01, 0x05, 0x06, 0x08, 0x0E, 0x00, 0x01, 0x00, 0x01, 0x01};
// UBX-CFG-TP5 -- Disable Timepulse (also leave 2 bytes)
char cmdDisableTimePulse[40] {0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x01, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x40, 0x42, 0x0F, 0x00, 0x40, 0x42, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0xA0, 0x86, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x76, 0x00, 0x00, 0x00};
// UBX-CFG-PM2 -- Configure Power Management Setup (also leave 2 bytes)
char cmdConfigPMS[52] {0xB5, 0x62, 0x06, 0x3B, 0x2C, 0x00, 0x01, 0x06, 0x00, 0x00, 0x2E, 0x08, 0x40, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2C, 0x01, 0x00, 0x00, 0x4F, 0xC1, 0x03, 0x00, 0x86, 0x02, 0x00, 0x00, 0xFE, 0x00, 0x00, 0x00, 0x64, 0x40, 0x01, 0x00, 0x56, 0xA4};
char cmdSaveConfig[21] {0xB5, 0x62, 0x06, 0x09, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03}; // UBX-CFG-CFG -- Save Configuration (also leave 2 bytes)
char cmdResetDefaults[21] {0xB5, 0x62, 0x06, 0x09, 0x0D, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x03}; // UBX-CFG-CFG -- Reset to Defaults (also leave 2 bytes)
// THIS WORKS
char secondTimeSleep[12] {0xB5, 0x62, 0x06, 0x04, 0x04, 0x00, 0x00, 0x00,0x08, 0x00};
char secondTimeAwake[12] {0xB5, 0x62, 0x06, 0x04, 0x04, 0x00, 0x00, 0x00,0x09, 0x00};
time_t tInit = 0;
time_t tBump = 0;
time_t tLast = 0;
time_t tNext = 0;
time_t tSend = 0;
time_t tCalm = 0;
DigitalOut myLedR(LEDR);
DigitalOut myLedG(LEDG);
DigitalOut myLedB(LEDB);
DigitalOut myLedW(LEDW);
void magInitSequence();
void accInitSequence();
void gpsInitSequence();
void gpsExecuteCommand(char *command, int length);
void tmpRead();
void magRead();
void accRead();
int gpsRead();
void ubxRead();
void send_message();
void onBtnIrq()
{
btnHFire++;
tSend = 0;
}
void onAccIrq()
{
accHFire++;
tSend = 0;
}
void onMagIrq()
{
magHFire++;
tSend = 0;
}
void accDumpCfg()
{
char start = CFG_ACC_ADR;
for (int i = 0; i < CFG_ACC_LEN; i++)
{
cmd[0] = start + i;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[i], 1);
}
printf("CFGACC: | ");
for (int i = 0; i < CFG_ACC_LEN; i++)
{
printf("%02X ", buf[i]);
}
printf("|\r\n");
}
void magDumpCfg()
{
char start = CFG_MAG_ADR;
for (int i = 0; i < CFG_MAG_LEN; i++)
{
cmd[0] = start + i;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[i], 1);
}
printf("CFGMAG: | ");
for (int i = 0; i < CFG_MAG_LEN; i++)
{
printf("%02X ", buf[i]);
}
printf("|\r\n");
}
// Clear any pending MAG IRQs
inline void magWipeIrq() {
cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
}
/**
* Entry point for application
*/
int main (void)
{
//i2c.frequency(400000);
wait(4);
printf("\r\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\r\n");
// Boot Flash
for (int i = 0; i <= 64; i++)
{
myLedR = i & 0x01;
myLedG = i & 0x02;
myLedB = i & 0x04;
myLedW = i & 0x08;
wait(0.01);
}
wait(4);
// btnPin.rise(&onBtnIrq);
printf("Boot flash complete.\r\n");
// setup tracing
setup_trace();
printf("Trace setup complete.\r\n");
// stores the status of a call to LoRaWAN protocol
lorawan_status_t retcode;
printf("Pre-sensor init.\r\n");
/* I2C init */
ret = 0x00;
magDumpCfg();
accDumpCfg();
magInitSequence();
accInitSequence();
// HUOT ADDITION -- 08/30/2018 -- RESET GPS TO DEFAULT BEFORE MOVING FORWARD
gpsExecuteCommand(cmdResetDefaults, sizeof(cmdResetDefaults));
gpsInitSequence();
magDumpCfg();
accDumpCfg();
printf("Post-sensor init.\r\n");
cfg = 0x00;
#if defined(TARGET_LRAT)
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cfg |= (ret & 0x80) >> 7;
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
accScale = 1 << (!(ret & 0x30) ? 0 : ((ret & 0x30) >> 4) - 1);
cmd[0] = LSM303_REG_MAG_CTRL_REG2_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
cfg |= (ret & 0x60) >> 1;
//accShift = 0; // Full 16-bit resolution
accShift = 4;
#else
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cfg |= (ret & 0x08) >> 3;
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cfg |= (ret & 0x08) >> 2;
accScale = 1 << ((ret & 0x30) >> 4);
cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
cfg |= (ret & 0x10);
if (cfg & 0x01)
accShift = 8;
else if (cfg & 0x02)
accShift = 4;
else
accShift = 6;
#endif
printf("Quality: %02x AccShift: %d AccScale: %d\r\n", cfg, accShift, accScale);
time_t tNow;
/*
// while(1)
// {
tNow = time(NULL);
printf("RTC: %08X\r\n", tNow);
#if defined(SENSOR_TEMP)
tmpRead();
#endif
magRead();
accRead();
gpsRead();
printf("TIM: %d, SAT: %d, LAT: %f, LON: %f\r\n", mytime, mybatt, mylat, mylon);
printf("IRQ: A=%02X M=%02X B=%02X\r\n", accHFire, magHFire, btnHFire);
wait(1);
// }
*/
for (int i = 0; i <= 64; i++)
{
myLedR = i & 0x01;
myLedG = i & 0x02;
myLedB = i & 0x04;
myLedW = i & 0x08;
wait(0.01);
}
// uint8_t crcA = 0;
// uint8_t crcB = 0;
// for(int i = 2; i <= 13; i++)
// {
// crcA = crcA + cmdStopGNSS[i];
// crcB = crcB + crcA;
// }
// cmdStopGNSS[14] = crcA;
// cmdStopGNSS[15] = crcB;
// printf("UBX CRC: %02X %02X\r\n", crcA, crcB);
// i2c.write(NEOM8M_ADR_GPS, cmdStopGNSS, 16);
// ubxRead();
// ubxRead();
// ubxRead();
// wait(1);
// ubxRead();
// return 0;
// HUOT ADDITION -- 08/30/2018 -- MAIN LOOP TO TEST GPS SLEEP/WAKE FUNCTIONALITY -- GOT IT WORKING
int x = 0;
printf("Putting to sleep... Good Luck ================ \r\n");
gpsExecuteCommand(secondTimeSleep, sizeof(secondTimeSleep));
while(1)
{
if ((x != 0) && (x % 10 == 0))
{
printf("Waking up GPS... Good luck, Huot \r\n");
gpsExecuteCommand(secondTimeAwake, sizeof(secondTimeAwake));
while (gpsRead() == 1);
printf("GPS Fix is good! Going to sleep... \r\n");
gpsExecuteCommand(secondTimeSleep, sizeof(secondTimeSleep));
}
printf("Waiting 5 seconds... \r\n");
wait(5);
x++;
printf("=== New loop incoming === \r\n");
}
// Initialize LoRaWAN stack
if (lorawan.initialize(&ev_queue) != LORAWAN_STATUS_OK) {
printf("\r\n LoRa initialization failed! \r\n");
return -1;
}
printf("\r\n Mbed LoRaWANStack initialized \r\n");
printf("MBED_CONF_LORA_APP_PORT: %d\r\n", MBED_CONF_LORA_APP_PORT);
printf("MBED_CONF_LORA_DUTY_CYCLE_ON: %d\r\n", MBED_CONF_LORA_DUTY_CYCLE_ON);
// prepare application callbacks
callbacks.events = mbed::callback(lora_event_handler);
lorawan.add_app_callbacks(&callbacks);
// Set number of retries in case of CONFIRMED messages
if (lorawan.set_confirmed_msg_retries(CONFIRMED_MSG_RETRY_COUNTER)
!= LORAWAN_STATUS_OK) {
printf("\r\n set_confirmed_msg_retries failed! \r\n\r\n");
return -1;
}
printf("\r\n CONFIRMED message retries : %d \r\n",
CONFIRMED_MSG_RETRY_COUNTER);
// Enable adaptive data rate
if (lorawan.enable_adaptive_datarate() != LORAWAN_STATUS_OK) {
printf("\r\n enable_adaptive_datarate failed! \r\n");
return -1;
}
printf("\r\n Adaptive data rate (ADR) - Enabled \r\n");
retcode = lorawan.connect();
if (retcode == LORAWAN_STATUS_OK ||
retcode == LORAWAN_STATUS_CONNECT_IN_PROGRESS) {
} else {
printf("\r\n Connection error, code = %d \r\n", retcode);
return -1;
}
printf("\r\n Connection - In Progress ...\r\n");
// make your event queue dispatching events forever
//ev_queue.dispatch_forever();
ev_queue.dispatch();
printf("\r\n- = - = - = - = - = - DISPATCH 1 COMPLETE - = - = - = - = - = -\r\n");
/*
printf("CONTROL LOOP GOES HERE!\r\n");
#if defined(TARGET_LRAT)
#else
for (int i = 0; i < 6; i++)
{
tNow = time(NULL);
printf("RTC: %08X\r\n", tNow);
tNext = tNow + 10;
printf("NXT: %08X\r\n", tNext);
// Clear any pending IRQs
cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
while (time(NULL) < tNext)
{
wait(1);
}
printf("Timer #%d complete.\r\n", i);
}
#endif
*/
tSend = time(NULL) + 1;
while (1) {
while (time(NULL) < tSend)
wait(0.1);
if (tSend == 0)
tCalm = time(NULL) + (DPANIC * NPANIC);
tSend = time(NULL) + (time(NULL) < tCalm ? DPANIC : DCHILL);
magWipeIrq();
printf("IT'S PACKET TIME!\r\n");
ev_queue.call(send_message);
ev_queue.dispatch();
printf("\r\n- = - = - = - = - = - DISPATCH 2 COMPLETE - = - = - = - = - = -\r\n");
//tSend = time(NULL) + 300;
//tSend = time(NULL) + (time(NULL) < tCalm ? DPANIC : DCHILL);
// Clear any pending IRQs
// cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
// i2c.write(LSM303_ADR_MAG, cmd, 1);
// i2c.read(LSM303_ADR_MAG, &ret, 1);
}
return 0;
}
/**
* Sends a message to the Network Server
*/
static void send_message()
{
printf("In send_message()...\r\n");
uint16_t packet_len;
int16_t retcode;
float sensor_value;
if (ds1820.begin()) {
ds1820.startConversion();
sensor_value = ds1820.read();
printf("\r\n Dummy Sensor Value = %3.1f \r\n", sensor_value);
ds1820.startConversion();
} else {
printf("\r\n No sensor found \r\n");
return;
}
time_t tNow = time(NULL);
printf("Clock: %d\r\n", tNow);
#if defined(SENSOR_TEMP)
tmpRead();
#endif
magRead();
accRead();
gpsRead();
int ilat = (int)(mylat * 100000);
int ilon = (int)(mylon * 100000);
printf("TIM: %d, SAT: %d, LAT: %d, LON: %d\r\n", mytime, mybatt, ilat, ilon);
packet_len = 11;
tx_buffer[0] = (mytime >> 24) & 0xFF;
tx_buffer[1] = (mytime >> 16) & 0xFF;
tx_buffer[2] = (mytime >> 8) & 0xFF;
tx_buffer[3] = (mytime >> 0) & 0xFF;
tx_buffer[4] = ((mybatt << 4) & 0xF0) | ((ilat >> 22) & 0x0F);
tx_buffer[5] = (ilat >> 14) & 0xFF;
tx_buffer[6] = (ilat >> 6) & 0xFF;
tx_buffer[7] = ((ilat << 2) & 0xFC) | ((ilon >> 24) & 0x03);
tx_buffer[8] = (ilon >> 16) & 0xFF;
tx_buffer[9] = (ilon >> 8) & 0xFF;
tx_buffer[10] = (ilon >> 0) & 0xFF;
printf("\r\nBUF: |");
for (int i = 0; i < packet_len; i++) { printf("%02X", tx_buffer[i]); }
printf("|\r\n");
retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, packet_len,
MSG_CONFIRMED_FLAG);
if (retcode < 0) {
retcode == LORAWAN_STATUS_WOULD_BLOCK ? printf("send - WOULD BLOCK\r\n")
: printf("\r\n send() - Error code %d \r\n", retcode);
if (retcode == LORAWAN_STATUS_WOULD_BLOCK) {
//retry in 3 seconds
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
ev_queue.call_in(3000, send_message);
}
}
return;
}
printf("\r\n %d bytes scheduled for transmission \r\n", retcode);
memset(tx_buffer, 0, sizeof(tx_buffer));
//LED Confirmation Output - MESSAGE SENT
for (int i = 0; i < 10; i++) {
myLedG = 1;
wait(0.1);
myLedG = 0;
myLedR = 1;
wait(0.1);
myLedR = 0;
myLedB = 1;
wait(0.1);
myLedB = 0;
}
}
/**
* Receive a message from the Network Server
*/
static void receive_message()
{
printf("In receive_message()...\r\n");
int16_t retcode;
retcode = lorawan.receive(MBED_CONF_LORA_APP_PORT, rx_buffer,
sizeof(rx_buffer),
MSG_CONFIRMED_FLAG|MSG_UNCONFIRMED_FLAG);
if (retcode < 0) {
printf("\r\n receive() - Error code %d \r\n", retcode);
return;
}
printf(" Data:");
for (uint8_t i = 0; i < retcode; i++) {
printf("%x", rx_buffer[i]);
}
printf("\r\n Data Length: %d\r\n", retcode);
/*
int startLoop = 0;
if (strncmp((char *)rx_buffer, cmdSendLoop, 8) == 0)
{
printf("SendLoop Command Received!\r\n");
startLoop = 1;
}
*/
memset(rx_buffer, 0, sizeof(rx_buffer));
/*
if (startLoop)
send_message();
*/
}
/**
* Event handler
*/
static void lora_event_handler(lorawan_event_t event)
{
tr_debug("In lora_event_handler(%d)...", event);
switch (event) {
case CONNECTED:
printf("\r\n Connection - Successful \r\n");
ev_queue.break_dispatch();
/*
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
send_message();
} else {
ev_queue.call_every(TX_TIMER, send_message);
}
*/
break;
case DISCONNECTED:
ev_queue.break_dispatch();
printf("\r\n Disconnected Successfully \r\n");
break;
case TX_DONE:
printf("\r\n Message Sent to Network Server \r\n");
ev_queue.break_dispatch();
/*
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
send_message();
}
*/
break;
case TX_TIMEOUT:
case TX_ERROR:
case TX_CRYPTO_ERROR:
case TX_SCHEDULING_ERROR:
printf("\r\n Transmission Error - EventCode = %d \r\n", event);
// try again
/*
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
send_message();
}
*/
break;
case RX_DONE:
printf("\r\n Received message from Network Server \r\n");
receive_message();
break;
case RX_TIMEOUT:
case RX_ERROR:
printf("\r\n Error in reception - Code = %d \r\n", event);
break;
case JOIN_FAILURE:
printf("\r\n OTAA Failed - Check Keys \r\n");
break;
case UPLINK_REQUIRED:
printf("\r\n Uplink required by NS \r\n");
/*
if (MBED_CONF_LORA_DUTY_CYCLE_ON) {
send_message();
}
*/
break;
default:
MBED_ASSERT("Unknown Event");
}
}
void magInitSequence()
{
printf("In magInitSequence()...\r\n");
myLedR = 0;
myLedG = 0;
cmd[0] = LSM303_REG_MAG_WHO_AM_I_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
res = (ret == LSM303_WHO_MAG ? sPass : sFail);
printf("MAG WhoAmI: %02X %s\r\n", ret, res);
if (ret == LSM303_WHO_MAG)
myLedG = 1;
else
myLedR = 1;
for (int i = 0; i < 2; i++) {
myLedB = 1;
wait(0.3);
myLedB = 0;
wait(0.3);
}
#if defined(TARGET_LRAT)
cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
cmd[1] = 0x70; // Ultra-High Performance Mode on XY axes, ODR=10Hz
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_CTRL_REG3_M;
cmd[1] = 0x00; // High Resolution? (Full-power), Continuous
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_CTRL_REG4_M;
cmd[1] = 0x0C; // Ultra-High Performance Mode on Z axis
i2c.write(LSM303_ADR_MAG, cmd, 2);
#if defined(SENSOR_TEMP)
// Enable Temp Sensor
cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
cmd[0] = LSM303_REG_MAG_CTRL_REG1_M;
cmd[1] = ret | 0x80;
i2c.write(LSM303_ADR_MAG, cmd, 2);
/*
cmd[0] = LSM303_REG_MAG_CTRL_REG5_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
cmd[0] = LSM303_REG_MAG_CTRL_REG5_M;
cmd[1] = ret | 0x40;
i2c.write(LSM303_ADR_MAG, cmd, 2);
*/
#endif
#else
cmd[0] = LSM303_REG_MAG_CFG_REG_A_M;
cmd[1] = 0x00; // Mag = 10 Hz (high-resolution and continuous mode)
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_CFG_REG_C_M;
//cmd[1] = 0x01; // Mag data-ready interrupt enable
cmd[1] = 0x40; // Mag enable interrupt on pin
i2c.write(LSM303_ADR_MAG, cmd, 2);
#endif
for (int i = 0; i < 2; i++) {
myLedR = 1;
myLedG = 1;
myLedB = 1;
wait(0.5);
myLedR = 0;
myLedG = 0;
myLedB = 0;
wait(0.5);
}
#if defined(TARGET_LRAT)
// LRAT MAG IRQ SETUP GOES HERE
#else
// MAG INTERRUPT SETUP
cmd[0] = LSM303_REG_MAG_INT_THS_L_REG_M;
cmd[1] = 0xE8;
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_INT_THS_H_REG_M;
cmd[1] = 0x03;
i2c.write(LSM303_ADR_MAG, cmd, 2);
cmd[0] = LSM303_REG_MAG_INT_CTRL_REG_M;
cmd[1] = 0xE7;
i2c.write(LSM303_ADR_MAG, cmd, 2);
magPin.rise(&onMagIrq);
#endif
}
void accInitSequence()
{
printf("In accInitSequence()...\r\n");
myLedR = 0;
myLedG = 0;
cmd[0] = LSM303_REG_ACC_WHO_AM_I_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
res = (ret == LSM303_WHO_ACC ? sPass : sFail);
printf("ACC WhoAmI: %02X %s\r\n", ret, res);
if (ret == LSM303_WHO_ACC)
myLedG = 1;
else
myLedR = 1;
for (int i = 0; i < 2; i++) {
myLedB = 1;
wait(0.3);
myLedB = 0;
wait(0.3);
}
#if defined(TARGET_LRAT)
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
cmd[1] = 0xB7; // High Resolution, ODR=100Hz, Enable XYZ Axes
i2c.write(LSM303_ADR_ACC, cmd, 2);
// HUOT ADDITION -- 08/30/2018 -- Accelerometer Intterupt Init Sequence
#if defined(ACC_INTERRUPT_ON)
// ACC INTERRUPT SETUP
// Enable Interrupt Pin
cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
// Configure Control Register 3
cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
cmd[1] = 0x08;
// cmd[1] = ret | 0x40;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_CTRL_REG7_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
// Latch Interrupt Enabling
cmd[0] = LSM303_CTRL_REG7_A;
cmd[1] = 0x04;
//cmd[1] = ret | 0x08;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Set Threshold/Duration/Config
// Set Threshold on X axis
cmd[0] = LSM303_REG_ACC_INT1_THS_X1_A;
cmd[1] = 0x7D;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Set Threshold on Y axis
cmd[0] = LSM303_REG_ACC_INT1_THS_Y1_A;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Set Y Threshold on Z axis
cmd[0] = LSM303_REG_ACC_INT1_THS_Z1_A;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Set Interrupt Duration
cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
cmd[1] = 0x00;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Set Interrupt Configuration
cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
cmd[1] = 0x02; // Set Interrupt Generation on X-Axis High event
i2c.write(LSM303_ADR_ACC, cmd, 2);
accPin.rise(&onAccIrq);
#endif
#else
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
cmd[1] = 0x57; // Enable XYZ Axes, ODR=100Hz
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Enable High Resolution Mode
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
cmd[1] = ret | 0x08; // High Resolution
i2c.write(LSM303_ADR_ACC, cmd, 2);
#if defined(SENSOR_TEMP)
// Enable Temp Sensor
cmd[0] = LSM303_REG_ACC_TEMP_CFG_REG_A;
cmd[1] = 0xC0;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
cmd[1] = ret | 0x80;
i2c.write(LSM303_ADR_ACC, cmd, 2);
#endif
#endif
//LED Confirmation Output - ACC INIT COMPLETE
for (int i = 0; i < 2; i++) {
myLedR = 1;
myLedG = 1;
myLedB = 1;
wait(0.5);
myLedR = 0;
myLedG = 0;
myLedB = 0;
wait(0.5);
}
// Set Full Scale to 4g
/*
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
//cmd[1] = ret | 0x30; // 16g
//cmd[1] = (ret & ~0x10) | 0x20; // 8g
cmd[1] = (ret & ~0x20) | 0x10; // 4g
//cmd[1] = ret & ~0x30; // 2g
i2c.write(LSM303_ADR_ACC, cmd, 2);
*/
/*
// IRQ Init from Datasheet.
cmd[0] = LSM303_REG_ACC_CTRL_REG1_A;
cmd[1] = 0xA7;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG2_A;
cmd[1] = 0x00;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
cmd[1] = 0x40;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG4_A;
cmd[1] = 0x00;
//cmd[1] = 0x10;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
cmd[1] = 0x08;
i2c.write(LSM303_ADR_ACC, cmd, 2);
*/
#if defined(TARGET_LRAT)
// LRAT ACC IRQ SETUP GOES HERE
#else
// ACC INTERRUPT SETUP
// Enable Interrupt Pin
cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG3_A;
cmd[1] = ret | 0x40;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Enable Interrupt Latch
cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
cmd[0] = LSM303_REG_ACC_CTRL_REG5_A;
cmd[1] = ret | 0x08;
i2c.write(LSM303_ADR_ACC, cmd, 2);
// Set Threshold/Duration/Config
cmd[0] = LSM303_REG_ACC_INT1_THS_A;
//cmd[1] = 0x10;
//cmd[1] = 0x40;
//cmd[1] = 0x60;
cmd[1] = 0x7D;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
cmd[1] = 0x00;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
cmd[1] = 0x2A;
//cmd[1] = 0x0A;
i2c.write(LSM303_ADR_ACC, cmd, 2);
accPin.rise(&onAccIrq);
#endif
}
void gpsInitSequence()
{
printf("In gpsInitSequence()...\r\n");
gpsRead();
if (mytime > 0)
{
set_time(mytime);
tInit = mytime;
myLedG = 1;
}
else
myLedR = 1;
for (int i = 0; i < 2; i++) {
myLedB = 1;
wait(0.3);
myLedB = 0;
wait(0.3);
}
myLedG = 0;
myLedR = 0;
// HUOT ADDITION -- GPS LOW POWER SETUP
//printf("Disabling GLONASS... \r\n");
//gpsExecuteCommand(cmdDisableGLONASS, sizeof(cmdDisableGLONASS)); // Disable GLONASS
//printf("Disabling Time Pulse... \r\n");
//gpsExecuteCommand(cmdDisableTimePulse, sizeof(cmdDisableTimePulse)); // Disable Time Pulse
//printf("Configuring PMS... \r\n");
//gpsExecuteCommand(cmdConfigPMS, sizeof(cmdConfigPMS)); // Configure Power Management Setup
//printf("LPM Init Sequence Complete. \r\n");
}
// HUOT ADDITION 08/30/2018 -- GENERIC GPS EXECUTE COMMAND FUNCTION
void gpsExecuteCommand(char *command, int length)
{
uint8_t crcA = 0;
uint8_t crcB = 0;
for(int i = 2; i <= (length - 3); i++)
{
crcA = crcA + command[i];
crcB = crcB + crcA;
}
command[(length - 2)] = crcA;
command[(length - 1)] = crcB;
printf("UBX CRC: %02X %02X\r\n", crcA, crcB);
i2c.write(NEOM8M_ADR_GPS, command, length);
printf("Command Executed \r\n");
wait(1);
}
void magRead()
{
cmd[0] = LSM303_REG_MAG_STATUS_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &rda, 1);
if (rda)
{
cmd[0] = LSM303_REG_MAG_OUTX_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[0], 1);
cmd[0] = LSM303_REG_MAG_OUTX_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[1], 1);
cmd[0] = LSM303_REG_MAG_OUTY_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[2], 1);
cmd[0] = LSM303_REG_MAG_OUTY_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[3], 1);
cmd[0] = LSM303_REG_MAG_OUTZ_L_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[4], 1);
cmd[0] = LSM303_REG_MAG_OUTZ_H_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[5], 1);
myMagX = (buf[0] | (buf[1] << 8));
myMagY = (buf[2] | (buf[3] << 8));
myMagZ = (buf[4] | (buf[5] << 8));
if (myMagX < magMinX)
magMinX = myMagX;
if (myMagY < magMinY)
magMinY = myMagY;
if (myMagZ < magMinZ)
magMinZ = myMagZ;
if (myMagX > magMaxX)
magMaxX = myMagX;
if (myMagY > magMaxY)
magMaxY = myMagY;
if (myMagZ > magMaxZ)
magMaxZ = myMagZ;
cmd[0] = LSM303_REG_MAG_INT_SOURCE_REG_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &ret, 1);
if (ret & 0x01 && magEvent == 0 && ret & 0xFC)
{
magSFire++;
magEvent = 1;
magSHIRQ++;
}
else if (!(ret & 0x01) && magEvent == 1 && !(ret & 0xFC))
{
magSFire++;
magEvent = 0;
magSLIRQ++;
}
printf("M|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myMagX, 6, myMagY, 6, myMagZ, 6, magMinX, 6, magMinY, 6, magMinZ, 6, magMaxX, 6, magMaxY, 6, magMaxZ, ret, magSHIRQ, magSLIRQ, magSFire, magHFire);
}
}
void accRead()
{
cmd[0] = LSM303_REG_ACC_STATUS_REG_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
if (rda)
{
cmd[0] = LSM303_REG_ACC_OUT_X_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 1);
cmd[0] = LSM303_REG_ACC_OUT_X_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[1], 1);
cmd[0] = LSM303_REG_ACC_OUT_Y_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[2], 1);
cmd[0] = LSM303_REG_ACC_OUT_Y_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[3], 1);
cmd[0] = LSM303_REG_ACC_OUT_Z_L_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[4], 1);
cmd[0] = LSM303_REG_ACC_OUT_Z_H_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[5], 1);
myAccX = ((int16_t)(buf[0] | (buf[1] << 8)) >> accShift);
myAccY = ((int16_t)(buf[2] | (buf[3] << 8)) >> accShift);
myAccZ = ((int16_t)(buf[4] | (buf[5] << 8)) >> accShift);
if (myAccX < accMinX)
accMinX = myAccX;
if (myAccY < accMinY)
accMinY = myAccY;
if (myAccZ < accMinZ)
accMinZ = myAccZ;
if (myAccX > accMaxX)
accMaxX = myAccX;
if (myAccY > accMaxY)
accMaxY = myAccY;
if (myAccZ > accMaxZ)
accMaxZ = myAccZ;
cmd[0] = LSM303_REG_ACC_INT1_SRC_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &ret, 1);
if (ret & 0x40)
{
accSFire++;
if (accEvent == 1)
{
accEvent = 0;
accSLIRQ++;
cmd[0] = LSM303_REG_ACC_INT1_THS_A;
cmd[1] = 0x7D;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
cmd[1] = 0x00;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
cmd[1] = 0x2A;
i2c.write(LSM303_ADR_ACC, cmd, 2);
}
else
{
accEvent = 1;
accSHIRQ++;
cmd[0] = LSM303_REG_ACC_INT1_THS_A;
cmd[1] = 0x50;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_DURATION_A;
//cmd[1] = 0x7D;
cmd[1] = 0x03;
i2c.write(LSM303_ADR_ACC, cmd, 2);
cmd[0] = LSM303_REG_ACC_INT1_CFG_A;
cmd[1] = 0x95;
i2c.write(LSM303_ADR_ACC, cmd, 2);
}
}
printf("A|%02X|%02X %02X %02X %02X %02X %02X|%*d,%*d,%*d|%*d,%*d,%*d|%*d,%*d,%*d|%02X|%02X/%02X %02X/%02X\r\n", rda, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 6, myAccX, 6, myAccY, 6, myAccZ, 6, accMinX, 6, accMinY, 6, accMinZ, 6, accMaxX, 6, accMaxY, 6, accMaxZ, ret, accSHIRQ, accSLIRQ, accSFire, accHFire);
}
}
void tmpRead()
{
#if defined(TARGET_LRAT)
cmd[0] = LSM303_REG_MAG_TEMP_L_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[0], 1);
cmd[0] = LSM303_REG_MAG_TEMP_H_M;
i2c.write(LSM303_ADR_MAG, cmd, 1);
i2c.read(LSM303_ADR_MAG, &buf[1], 1);
myTemp = (int16_t)(buf[0] | (buf[1] << 8));
printf("T|%02X %02X| (%d)\r\n", buf[0], buf[1], myTemp);
#else
cmd[0] = LSM303_REG_ACC_STATUS_REG_AUX_A;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &rda, 1);
if (rda & 0x04)
{
cmd[0] = LSM303_REG_ACC_OUT_TEMP_L_A | 0x80;
i2c.write(LSM303_ADR_ACC, cmd, 1);
i2c.read(LSM303_ADR_ACC, &buf[0], 2);
myTemp = (int16_t)(buf[0] | (buf[1] << 8)) >> 6;
printf("T|%02X %02X %02X| (%d)\r\n", rda, buf[0], buf[1], myTemp);
}
#endif
}
// HUOT ALTERATION -- 08/30/2018 -- Change GPS read from "void" to return "int" to solidfy if fix was good or bad
int gpsRead()
{
bool gpsDone = false;
bool fixGood = false;
uint8_t crcPass = 0;
uint8_t crcFail = 0;
uint32_t tDate = 0;
uint32_t tTime = 0;
myLedW = 1;
pos = 0;
ret = 0xFF;
cmd[0] = 0xFF;
i2c.write(NEOM8M_ADR_GPS, cmd, 1);
while(!gpsDone)
{
while (ret == 0xFF)
{
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
}
while (ret != 0xFF)
{
buf[pos++] = ret;
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
if (ret == '\r')
{
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
if (ret == '\n')
{
buf[pos] = 0x00;
// NMEA Validation
uint16_t crc = 0;
char clr = '\0';
if (buf[0] == '$' && buf[pos-3] == '*')
{
for (int i = 1; i < pos-3; i++)
{
crc ^= buf[i];
}
}
if (crc == ((buf[pos-2] < 'A' ? buf[pos-2] - '0' : buf[pos-2] - '7') << 4 | (buf[pos-1] < 'A' ? buf[pos-1] - '0' : buf[pos-1] - '7')))
{
clr = '2'; // 2 = Green
crcPass++;
}
else
{
clr = '1'; // 1 = Red
crcFail++;
}
printf("GPS: [\u001b[3%cm%02X\u001b[0m] |%s|\r\n", clr, crc, buf);
if (clr == '2')
{
// Global Positioning System Fix Data
if(strncmp(buf, "$GNGGA", 6) == 0)
{
printf("GNGGA> ");
//sscanf(cmd, "$GPGGA,%f,%f,%c,%f,%c,%d,%d,%*f,%f", &timefix, &latitude, &ns, &longitude, &ew, &fq, &nst, &altitude);
//pc.printf("GPGGA Fix taken at: %f, Latitude: %f %c, Longitude: %f %c, Fix quality: %d, Number of sat: %d, Altitude: %f M\n", timefix, latitude, ns, longitude, ew, fq, nst, altitude);
float fldTim, fldAlt;
double fldLat, fldLon;
char fldN_S, fldE_W;
int fldFix, fldSat;
sscanf(buf, "$GNGGA,%f,%lf,%c,%lf,%c,%d,%d,%*f,%f", &fldTim, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldFix, &fldSat, &fldAlt);
printf("Sec: %.2f, Lat: %.5f %c, Lon: %.5f %c, Fix: %d, Sat: %d, Alt: %.1f M\r\n", fldTim, fldLat, fldN_S, fldLon, fldE_W, fldFix, fldSat, fldAlt);
if (clr == '2')
{
mylat = fldLat / (fldN_S == 'S' ? -100 : 100);
mylon = fldLon / (fldE_W == 'W' ? -100 : 100);
//mytime = (uint32_t)fldTim;
mybatt = (fldSat & 0xF0 ? 0x0F : fldSat & 0x0F);
}
}
// Satellite status
if(strncmp(buf, "$GNGSA", 6) == 0)
{
//printf("GNGSA> ");
//sscanf(cmd, "$GPGSA,%c,%d,%d", &tf, &fix, &nst);
//pc.printf("GPGSA Type fix: %c, 3D fix: %d, number of sat: %d\r\n", tf, fix, nst);
char fldTyp;
int fldDim, fldSat;
sscanf(buf, "$GNGSA,%c,%d,%d", &fldTyp, &fldDim, &fldSat);
//printf("Typ: %c, Pos: %d, Sat: %d\r\n", fldTyp, fldDim, fldSat);
}
// Geographic position, Latitude and Longitude
if(strncmp(buf, "$GNGLL", 6) == 0)
{
//printf("GNGLL> ");
//sscanf(cmd, "$GPGLL,%f,%c,%f,%c,%f", &latitude, &ns, &longitude, &ew, &timefix);
//pc.printf("GPGLL Latitude: %f %c, Longitude: %f %c, Fix taken at: %f\n", latitude, ns, longitude, ew, timefix);
float fldTim;
double fldLat, fldLon;
char fldN_S, fldE_W;
sscanf(buf, "$GNGLL,%lf,%c,%lf,%c,%f", &fldLat, &fldN_S, &fldLon, &fldE_W, &fldTim);
//printf("Lat: %.5f %c, Lon: %.5f %c, Sec: %.2f\r\n", fldLat, fldN_S, fldLon, fldE_W, fldTim);
}
// Geographic position, Latitude and Longitude
if(strncmp(buf, "$GNRMC", 6) == 0)
{
//printf("GPS: [\u001b[3%cm%02X\u001b[0m] |%s|\r\n", clr, crc, buf);
printf("GNRMC> ");
//sscanf(cmd, "$GPRMC,%f,%c,%f,%c,%f,%c,%f,,%d", &timefix, &status, &latitude, &ns, &longitude, &ew, &speed, &date);
//pc.printf("GPRMC Fix taken at: %f, Status: %c, Latitude: %f %c, Longitude: %f %c, Speed: %f, Date: %d\n", timefix, status, latitude, ns, longitude, ew, speed, date);
float fldTim, fldSpd, fldTrk;
fldTrk = 0;
double fldLat, fldLon;
char fldSts, fldN_S, fldE_W;
uint32_t fldDat;
if (sscanf(buf, "$GNRMC,,%c", &fldSts) != 1 &&
sscanf(buf, "$GNRMC,%f,%c,,,,,,,%d", &fldTim, &fldSts, &fldDat) != 3 &&
sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,,%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, &fldDat) != 8 &&
sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,%f,%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, &fldTrk, &fldDat) != 9)
printf("[\u001b[33mWARN\u001b[0m] Invalid GNRMC packet detected.\r\n");
//sscanf(buf, "$GNRMC,%f,%c,%lf,%c,%lf,%c,%f,%7[^,],%d", &fldTim, &fldSts, &fldLat, &fldN_S, &fldLon, &fldE_W, &fldSpd, fldFoo, &fldDat);
printf("Sec: %.2f, Sts: %c, Lat: %.5f %c, Lon: %.5f %c, Spd: %.3f, Dat: %06d\r\n", fldTim, fldSts, fldLat, fldN_S, fldLon, fldE_W, fldSpd, fldDat);
if (clr == '2')
{
tTime = (uint32_t)fldTim;
tDate = fldDat;
if (fldSts == 'A')
fixGood = true;
}
}
}
pos = 0;
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
}
else
{
printf("[\u001b[33mWARN\u001b[0m] Expected '0A', received '%02X'.\r\n", ret);
}
}
//else if (pos == 82)
else if (pos == 191)
{
buf[pos] = 0x00;
printf("GPS: |%s| ...\r\n", buf);
pos = 0;
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
}
}
buf[pos] = 0x00;
gpsDone = true;
}
if (pos > 0)
printf("GPS: |%s|\r\n", buf);
myLedW = 0;
if (crcFail)
printf("[\u001b[33mWARN\u001b[0m] CRC PASS: %d FAIL: %d\r\n", crcPass, crcFail);
struct tm ts;
time_t t;
uint8_t tDay = tDate / 10000;
uint8_t tMon = (tDate - (tDay * 10000)) / 100;
uint8_t tYear = (tDate - ((tDay * 10000) + (tMon * 100))) + 100;
uint8_t tHour = tTime / 10000;
uint8_t tMin = (tTime - (tHour * 10000)) / 100;
uint8_t tSec = (tTime - ((tHour * 10000) + (tMin * 100)));
ts.tm_year = tYear;
ts.tm_mon = tMon - 1;
ts.tm_mday = tDay;
ts.tm_hour = tHour;
ts.tm_min = tMin;
ts.tm_sec = tSec;
t = mktime(&ts);
//printf("DAT: %06d TIM: %d\r\n", tDate, tTime);
//printf("CNV: %04d-%02d-%02d@%02d:%02d:%02d\r\n", tYear, tMon, tDay, tHour, tMin, tSec);
//printf("T: %d\t%s", t, ctime(&t));
printf("GPS: %08X\t%s", t, ctime(&t));
mytime = t;
if (fixGood)
myLedG = 1;
else
myLedR = 1;
for (int i = 0; i < 10; i++) {
myLedB = 1;
wait(0.1);
myLedB = 0;
wait(0.1);
}
if (fixGood)
return 0;
else
return 1;
}
void ubxRead()
{
uint8_t crcPass = 0;
uint8_t crcFail = 0;
myLedW = 1;
pos = 0;
ret = 0xFF;
cmd[0] = 0xFF;
i2c.write(NEOM8M_ADR_GPS, cmd, 1);
while (ret == 0xFF)
{
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
}
while (ret != 0xFF)
{
buf[pos++] = ret;
i2c.read(NEOM8M_ADR_GPS, &ret, 1);
}
printf("UBX: | ");
for (int i = 0; i <= pos; i++) { printf("%02X ", buf[i]); }
printf("|\r\n", buf);
myLedW = 0;
//if (crcFail)
// printf("[\u001b[33mWARN\u001b[0m] CRC PASS: %d FAIL: %d\r\n", crcPass, crcFail);
if (pos > 0)
myLedG = 1;
else
myLedR = 1;
for (int i = 0; i < 10; i++) {
myLedB = 1;
wait(0.1);
myLedB = 0;
wait(0.1);
}
}
// EOF
