Code final

Dependencies:   mbed SimpleBLE X_NUCLEO_IDB0XA1 LIS3DH_spi

main.cpp

Committer:
Nthnthj
Date:
2020-01-22
Revision:
10:a15e07c7ad61
Parent:
9:3d83d0b410b8

File content as of revision 10:a15e07c7ad61:

//Includes

#include "mbed.h"
#include "SimpleBLE.h"
#include "LIS3DH.h"
#include "stdlib.h"

//Accelerometer

#define MOSI PC_12
#define MISO PC_11
#define CS PC_5
#define SCLK PC_10

//Bluetooth hc05-6

#define TX D0
#define RX D1

//Init simpleBLE

//SimpleBLE ble("ObCP_Roller_Catcher2");


// GPIO set

//Interrupt input

InterruptIn user1(PC_13);  //User1
InterruptIn boutton1(D3);
InterruptIn boutton2(D4);
InterruptIn event(A0);

Timer timer;

DigitalOut led1(D14);
DigitalOut transistor(D6);

//PWM output

PwmOut PWMoutput(PB_1);          //Main PWM output
PwmOut Green(PC_8);              //PWM Red LED
PwmOut Red(PC_6);                //PWM Green LED
PwmOut Blue(PC_9);               //PWM Blue LED

//Init accelerometer

LIS3DH      acc(MOSI, MISO, SCLK, CS, LIS3DH_DR_NR_LP_50HZ, LIS3DH_FS_2G);

// Characteristics Accelerometer input

//SimpleChar<float> accX = ble.readOnly_float(0xA000, 0xA002);
//SimpleChar<float> compteur = ble.readOnly_float(0xA000, 0xA003);
//SimpleChar<float> Temps = ble.readOnly_float(0xA000, 0xA004);

Serial BT(USBTX,USBRX);
//Serial pc(USBTX, USBRX);

int compteur;
bool flag = false;
float end,begin;
int message = 0;
int temps1 = 0;
string course;
char Buffer[10];
int i = 0;
int begin2 = 0;

void envoi(int message){
    BT.printf("%i\n", message);
    //  pc.printf("Message envoye \r\n");
}


void pressed(){
    //  pc.printf("Test 2 \n ");
    led1 = !led1;
    temps1 = timer.read_ms();
    
    //  pc.printf("%i \r\n",temps1);
    message = temps1;
    envoi(message);
    //timer.stop();
    //timer.start();
    }




// When characteristic LED RGB changing

void LEDupdate(uint32_t newColor)
{/*
    // read individual bytes
    uint8_t* channels = (uint8_t*)&newColor;

    // cast to float, as PwmOut expects a value between 0.0f and 1.0f
    Red   = static_cast<float>(channels[0]) / 255.0f;
    Green = static_cast<float>(channels[1]) / 255.0f;
    Blue  = static_cast<float>(channels[2]) / 255.0f; */
}

// When characteristic PWM output changing

void PWMupdate(uint8_t pwmvalue)
{

    // cast to float, as PwmOut expects a value between 0.0f and 1.0f
//    PWMoutput   = static_cast<float>(pwmvalue) / 255.0f;
}

// When characteristic input changing
void Accupdate()
{

    //accX = float(short((acc.read_reg(LIS3DH_OUT_X_H) << 8) | acc.read_reg(LIS3DH_OUT_X_L))) * 0.001F / 15;
    //accY = float(short((acc.read_reg(LIS3DH_OUT_Y_H) << 8) | acc.read_reg(LIS3DH_OUT_Y_L))) * 0.001F / 15;
    //accZ = float(short((acc.read_reg(LIS3DH_OUT_Z_H) << 8) | acc.read_reg(LIS3DH_OUT_Z_L))) * 0.001F / 15;
    //Temps=15.68;

}

// Characteritic PWM LED RGB
//SimpleChar<uint32_t> color = ble.writeOnly_u32(0x6200, 0x6201, &LEDupdate);

// Characteristic PWM output
//SimpleChar<uint8_t> pwmout = ble.writeOnly_u8(0xA000, 0xA001, &PWMupdate);



void skater_d()
{
    if(flag==false) {
        //  pc.printf("Ligne de depart coupee solo \n");
        if( flag == false) {
            //printf("Depart skate \n");
            begin = timer.read_ms();
            compteur=100;
            //pc.printf("                                         skater lance %.0f \n", begin);
            flag = true;
        } else if(flag == true) {
            //printf("erreur \n");
            //pc.printf("                                                                      Temps du skater : %.0f \n", end-begin);
            flag = false;
        }
    }
    else if(flag==true) {
        //printf("Ligne d'arrivee coupee \n");
        if( flag == false ) {
            //printf("arrivee coupe sans depart\n");
            flag = true;
        } else if(flag == true ) {
            //printf("Arrivee skate \n");
            end = timer.read_ms();
            //Temps = end-begin;
            compteur=200;
            //wait(1);
            //pc.printf("                                                                      Temps du skater : %.0f \n", end-begin);
            flag = false;
        }
    } 
}

void test_mode(char Buffer[10]){
    if(Buffer[0] == 'S'){
        //  pc.printf("mode solo \n");
        timer.reset();
        flag = false;
    }else if(Buffer[0]=='D'){
        //  pc.printf("mode duo \n");
        flag=true;
        timer.reset();
    }
    else if (Buffer[0] == 'R'){
        //  pc.printf("Reset timer \n ");
        timer.reset();
        //wait(1);
        //timer.start();
    }
    //  pc.printf(" Test \n");
}


void RXevent (){
        //c=BT.getc();
    if(BT.readable()){
        BT.scanf("%s", &Buffer);
        wait(1);
    } 
        
        //pc.printf(" Message recu :%s \n",Buffer);
        //timer.start();
        
        //test_mode(Buffer);
        
    if (Buffer[0] == 'R'){
        //  pc.printf("Reset timer \r\n ");
        timer.reset();
        //wait(1);
        //timer.start();
        //temps1=timer.read_ms();
        //envoi(temps1);
    }
    //  pc.printf(" Message recu :%s \n", Buffer); 
    return;    
}



//Main program

int main(int, char**)
{
    transistor=1;
    //ble.start();
    //Ticker t;
    //t.attach(&Accupdate, 15.0f);
    timer.start();
    BT.attach(&RXevent);
    //BT.attach(&RXevent);
    user1.fall(&pressed);
    //boutton1.fall(&pressed);
    //boutton2.fall(&pressed);
    event.fall(&pressed);
    //BT.attach(&RXevent);

    
    while (1) {
        

        //begin2 = timer.read_ms();
        Green = 0.001;
        wait(1);
        //BT.puts("Test");
        Green = 0;
        wait(1);
        //}

    }
}

//blablabla