Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
AI_Friday.cpp
- Committer:
- smilestone520
- Date:
- 2016-05-25
- Revision:
- 9:b073f4ecb5f9
- Child:
- 11:44989c0bcea5
File content as of revision 9:b073f4ecb5f9:
/*LAB_DCMotor*/
#include "mbed.h"
//The number will be compiled as type "double" in default
//Add a "f" after the number can make it compiled as type "float"
#define Ts 0.01f //period of timer1 (s)
#define Kp 0.003f
#define Ki 0.01f
PwmOut pwm1(D7);
PwmOut pwm1n(D11);
PwmOut pwm2(D8);
PwmOut pwm2n(A3);
Serial bluetooth(D10,D2);
Serial pc(D1, D0);
DigitalOut led1(A4);
DigitalOut led2(A5);
//Motor1 sensor
InterruptIn HallA_1(A1);
InterruptIn HallB_1(A2);
//Motor2 sensor
InterruptIn HallA_2(D13);
InterruptIn HallB_2(D12);
Ticker timer1;
void timer1_interrupt(void);
void CN_interrupt(void);
void init_TIMER(void);
void init_PWM(void);
void init_CN(void);
int8_t stateA_1=0, stateB_1=0, stateA_2=0, stateB_2=0;
int8_t state_1 = 0, state_1_old = 0, state_2 = 0, state_2_old = 0;
int v1Count = 0;
int v2Count = 0;
float v1 = 0.0, v1_ref = 60.0;
float v1_err = 0.0, v1_ierr = 0.0, PIout_1 = 0.0, PIout_1_old = 0.0;
float v2 = 0.0, v2_ref = -60.0;
float v2_err = 0.0, v2_ierr = 0.0, PIout_2 = 0.0, PIout_2_old = 0.0;
int main() {
init_TIMER();
init_PWM();
init_CN();
bluetooth.baud(115200); //設定鮑率
pc.baud(57600);
while(1)
{
if(pc.readable())
{
bluetooth.putc(pc.getc());
}
if(bluetooth.readable())
{
pc.putc(bluetooth.getc());
}
}
}
void timer1_interrupt(void)
{
//Motor 1
v1 = (float)v1Count * 100.0f / 12.0f * 60.0f / 29.0f; //unit: rpm
v1Count = 0;
///code for PI control///
v1_err = v1_ref - v1;
v1_ierr = 0.01f*v1_err + v1_ierr;
PIout_1 = Kp*v1_err + Ki*v1_ierr;
/////////////////////////
if(PIout_1 >= 0.5f)PIout_1 = 0.5f;
else if(PIout_1 <= -0.5f)PIout_1 = -0.5f;
pwm1.write(PIout_1 + 0.5f);
TIM1->CCER |= 0x4;
//Motor 2
v2 = (float)v2Count * 100.0f / 12.0f * 60.0f / 29.0f; //unit: rpm
v2Count = 0;
///code for PI control///
v2_err = v2_ref - v2;
v2_ierr = 0.01f*v2_err + v2_ierr;
PIout_2 = Kp*v2_err + Ki*v2_ierr;
/////////////////////////
if(PIout_2 >= 0.5f)PIout_2 = 0.5f;
else if(PIout_2 <= -0.5f)PIout_2 = -0.5f;
pwm2.write(PIout_2 + 0.5f);
TIM1->CCER |= 0x40;
switch(bluetooth.getc())
{
case '1':
v1_ref = 30;
v2_ref = -30;
break;
case '2':
v1_ref = 40;
v2_ref = -40;
break;
case '3':
v1_ref = 50;
v2_ref = -50;
break;
case '4':
v1_ref = 60;
v2_ref = -60;
break;
case '5':
v1_ref = -70;
v2_ref = 70;
break;
case '6':
v1_ref = -80;
v2_ref = 80;
break;
case '7':
v1_ref = -100;
v2_ref = 100;
break;
case '8':
v1_ref = 0;
v2_ref = 0;
break;
}
}
void CN_interrupt(void)
{
//Motor 1
stateA_1 = HallA_1.read();
stateB_1 = HallB_1.read();
///code for state determination///
if(stateA_1==0&&stateB_1==0){
state_1 = 1;}
else if(stateA_1==0&&stateB_1==1){
state_1 = 2;}
else if(stateA_1==1&&stateB_1==1){
state_1 = 3;}
else if(stateA_1==1&&stateB_1==0){
state_1 = 4;}
if(state_1 == 1)
{
if(state_1-state_1_old == -3)
v1Count=v1Count+1;
else if(state_1-state_1_old == -1)
v1Count=v1Count-1;
}
else if(state_1 == 2)
{
if(state_1-state_1_old == 1)
v1Count=v1Count+1;
else if(state_1-state_1_old == -1)
v1Count=v1Count-1;
}
else if(state_1 == 3)
{
if(state_1-state_1_old == 1)
v1Count=v1Count+1;
else if(state_1-state_1_old == -1)
v1Count=v1Count-1;
}
else if(state_1 == 4)
{
if(state_1-state_1_old == 1)
v1Count=v1Count+1;
else if(state_1-state_1_old == 3)
v1Count=v1Count-1;
}
state_1_old = state_1;
//////////////////////////////////
//Forward
//v1Count +1
//Inverse
//v1Count -1
//Motor 2
stateA_2 = HallA_2.read();
stateB_2 = HallB_2.read();
///code for state determination///
if(stateA_2==0&&stateB_2==0){
state_2 = 1;}
else if(stateA_2==0&&stateB_2==1){
state_2 = 2;}
else if(stateA_2==1&&stateB_2==1){
state_2 = 3;}
else if(stateA_2==1&&stateB_2==0){
state_2 = 4;}
if(state_2 == 1)
{
if(state_2-state_2_old == -3)
v2Count=v2Count+1;
else if(state_2-state_2_old == -1)
v2Count=v2Count-1;
}
else if(state_2 == 2)
{
if(state_2-state_2_old == 1)
v2Count=v2Count+1;
else if(state_2-state_2_old == -1)
v2Count=v2Count-1;
}
else if(state_2 == 3)
{
if(state_2-state_2_old == 1)
v2Count=v2Count+1;
else if(state_2-state_2_old == -1)
v2Count=v2Count-1;
}
else if(state_2 == 4)
{
if(state_2-state_2_old == 1)
v2Count=v2Count+1;
else if(state_2-state_2_old == 3)
v2Count=v2Count-1;
}
state_2_old = state_2;
//////////////////////////////////
//Forward
//v2Count +1
//Inverse
//v2Count -1
}
void init_TIMER(void)
{
timer1.attach_us(&timer1_interrupt, 10000);//10ms interrupt period (100 Hz)
}
void init_PWM(void)
{
pwm1.period_us(50);
pwm1.write(0.5);
TIM1->CCER |= 0x4;
pwm2.period_us(50);
pwm2.write(0.5);
TIM1->CCER |= 0x40;
}
void init_CN(void)
{
HallA_1.rise(&CN_interrupt);
HallA_1.fall(&CN_interrupt);
HallB_1.rise(&CN_interrupt);
HallB_1.fall(&CN_interrupt);
HallA_2.rise(&CN_interrupt);
HallA_2.fall(&CN_interrupt);
HallB_2.rise(&CN_interrupt);
HallB_2.fall(&CN_interrupt);
stateA_1 = HallA_1.read();
stateB_1 = HallB_1.read();
stateA_2 = HallA_2.read();
stateB_2 = HallB_2.read();
}