Renesas / opencv-lib

Dependents:   RZ_A2M_Mbed_samples

Embed: (wiki syntax)

« Back to documentation index

ParamGrid Class Reference

ParamGrid Class Reference
[Machine Learning]

The structure represents the logarithmic grid range of statmodel parameters. More...

#include <ml.hpp>

Public Member Functions

 ParamGrid ()
 Default constructor.
 ParamGrid (double _minVal, double _maxVal, double _logStep)
 Constructor with parameters.

Data Fields

double minVal
 Minimum value of the statmodel parameter. Default value is 0.
double maxVal
 Maximum value of the statmodel parameter. Default value is 0.
double logStep
 Logarithmic step for iterating the statmodel parameter.

Detailed Description

The structure represents the logarithmic grid range of statmodel parameters.

It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate being computed by cross-validation.

Definition at line 107 of file ml.hpp.


Constructor & Destructor Documentation

ParamGrid (  )

Default constructor.

ParamGrid ( double  _minVal,
double  _maxVal,
double  _logStep 
)

Constructor with parameters.


Field Documentation

double logStep

Logarithmic step for iterating the statmodel parameter.

The grid determines the following iteration sequence of the statmodel parameter values:

\[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\]

where $n$ is the maximal index satisfying

\[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\]

The grid is logarithmic, so logStep must always be greater then 1. Default value is 1.

Definition at line 125 of file ml.hpp.

double maxVal

Maximum value of the statmodel parameter. Default value is 0.

Definition at line 116 of file ml.hpp.

double minVal

Minimum value of the statmodel parameter. Default value is 0.

Definition at line 115 of file ml.hpp.