Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: RZ_A2M_Mbed_samples
KNearest Class Reference
[Machine Learning]
The class implements K-Nearest Neighbors model. More...
#include <ml.hpp>
Inherits cv::ml::StatModel.
Public Types | |
enum | Types |
Implementations of KNearest algorithm. More... | |
enum | Flags { , RAW_OUTPUT = 1 } |
Predict options. More... | |
Public Member Functions | |
virtual CV_WRAP int | getDefaultK () const =0 |
Default number of neighbors to use in predict method. | |
virtual CV_WRAP void | setDefaultK (int val)=0 |
Default number of neighbors to use in predict method. | |
virtual CV_WRAP bool | getIsClassifier () const =0 |
Whether classification or regression model should be trained. | |
virtual CV_WRAP void | setIsClassifier (bool val)=0 |
Whether classification or regression model should be trained. | |
virtual CV_WRAP int | getEmax () const =0 |
Parameter for KDTree implementation. | |
virtual CV_WRAP void | setEmax (int val)=0 |
Parameter for KDTree implementation. | |
virtual CV_WRAP int | getAlgorithmType () const =0 |
Algorithm type, one of KNearest::Types. | |
virtual CV_WRAP void | setAlgorithmType (int val)=0 |
Algorithm type, one of KNearest::Types. | |
virtual CV_WRAP float | findNearest (InputArray samples, int k, OutputArray results, OutputArray neighborResponses=noArray(), OutputArray dist=noArray()) const =0 |
Finds the neighbors and predicts responses for input vectors. | |
virtual CV_WRAP int | getVarCount () const =0 |
Returns the number of variables in training samples. | |
virtual CV_WRAP bool | empty () const |
Returns true if the Algorithm is empty (e.g. | |
virtual CV_WRAP bool | isTrained () const =0 |
Returns true if the model is trained. | |
virtual CV_WRAP bool | isClassifier () const =0 |
Returns true if the model is classifier. | |
virtual CV_WRAP bool | train (const Ptr< TrainData > &trainData, int flags=0) |
Trains the statistical model. | |
virtual CV_WRAP bool | train (InputArray samples, int layout, InputArray responses) |
Trains the statistical model. | |
virtual CV_WRAP float | calcError (const Ptr< TrainData > &data, bool test, OutputArray resp) const |
Computes error on the training or test dataset. | |
virtual CV_WRAP float | predict (InputArray samples, OutputArray results=noArray(), int flags=0) const =0 |
Predicts response(s) for the provided sample(s) | |
virtual CV_WRAP void | clear () |
Clears the algorithm state. | |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage. | |
virtual void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage. | |
virtual CV_WRAP void | save (const String &filename) const |
Saves the algorithm to a file. | |
virtual CV_WRAP String | getDefaultName () const |
Returns the algorithm string identifier. | |
Static Public Member Functions | |
static CV_WRAP Ptr< KNearest > | create () |
Creates the empty model. | |
template<typename _Tp > | |
static Ptr< _Tp > | train (const Ptr< TrainData > &data, int flags=0) |
Create and train model with default parameters. | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node. | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file. | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String. |
Detailed Description
The class implements K-Nearest Neighbors model.
- See also:
- ml_intro_knn
Definition at line 406 of file ml.hpp.
Member Enumeration Documentation
enum Flags [inherited] |
Member Function Documentation
virtual CV_WRAP float calcError | ( | const Ptr< TrainData > & | data, |
bool | test, | ||
OutputArray | resp | ||
) | const [virtual, inherited] |
Computes error on the training or test dataset.
- Parameters:
-
data the training data test if true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing. resp the optional output responses.
The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0-100%).
virtual CV_WRAP void clear | ( | ) | [virtual, inherited] |
Clears the algorithm state.
Reimplemented in DescriptorMatcher, and FlannBasedMatcher.
Creates the empty model.
The static method creates empty KNearest classifier. It should be then trained using StatModel::train method.
virtual CV_WRAP bool empty | ( | ) | const [virtual, inherited] |
virtual CV_WRAP float findNearest | ( | InputArray | samples, |
int | k, | ||
OutputArray | results, | ||
OutputArray | neighborResponses = noArray() , |
||
OutputArray | dist = noArray() |
||
) | const [pure virtual] |
Finds the neighbors and predicts responses for input vectors.
- Parameters:
-
samples Input samples stored by rows. It is a single-precision floating-point matrix of `<number_of_samples> * k` size. k Number of used nearest neighbors. Should be greater than 1. results Vector with results of prediction (regression or classification) for each input sample. It is a single-precision floating-point vector with `<number_of_samples>` elements. neighborResponses Optional output values for corresponding neighbors. It is a single- precision floating-point matrix of `<number_of_samples> * k` size. dist Optional output distances from the input vectors to the corresponding neighbors. It is a single-precision floating-point matrix of `<number_of_samples> * k` size.
For each input vector (a row of the matrix samples), the method finds the k nearest neighbors. In case of regression, the predicted result is a mean value of the particular vector's neighbor responses. In case of classification, the class is determined by voting.
For each input vector, the neighbors are sorted by their distances to the vector.
In case of C++ interface you can use output pointers to empty matrices and the function will allocate memory itself.
If only a single input vector is passed, all output matrices are optional and the predicted value is returned by the method.
The function is parallelized with the TBB library.
virtual CV_WRAP int getAlgorithmType | ( | ) | const [pure virtual] |
Algorithm type, one of KNearest::Types.
- See also:
- setAlgorithmType
virtual CV_WRAP int getDefaultK | ( | ) | const [pure virtual] |
Default number of neighbors to use in predict method.
- See also:
- setDefaultK
virtual CV_WRAP String getDefaultName | ( | ) | const [virtual, inherited] |
Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
virtual CV_WRAP int getEmax | ( | ) | const [pure virtual] |
Parameter for KDTree implementation.
- See also:
- setEmax
virtual CV_WRAP bool getIsClassifier | ( | ) | const [pure virtual] |
Whether classification or regression model should be trained.
- See also:
- setIsClassifier
virtual CV_WRAP int getVarCount | ( | ) | const [pure virtual, inherited] |
Returns the number of variables in training samples.
virtual CV_WRAP bool isClassifier | ( | ) | const [pure virtual, inherited] |
Returns true if the model is classifier.
virtual CV_WRAP bool isTrained | ( | ) | const [pure virtual, inherited] |
Returns true if the model is trained.
static Ptr<_Tp> load | ( | const String & | filename, |
const String & | objname = String() |
||
) | [static, inherited] |
Loads algorithm from the file.
- Parameters:
-
filename Name of the file to read. objname The optional name of the node to read (if empty, the first top-level node will be used)
This is static template method of Algorithm. It's usage is following (in the case of SVM):
Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn).
static Ptr<_Tp> loadFromString | ( | const String & | strModel, |
const String & | objname = String() |
||
) | [static, inherited] |
Loads algorithm from a String.
- Parameters:
-
strModel The string variable containing the model you want to load. objname The optional name of the node to read (if empty, the first top-level node will be used)
This is static template method of Algorithm. It's usage is following (in the case of SVM):
Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);
virtual CV_WRAP float predict | ( | InputArray | samples, |
OutputArray | results = noArray() , |
||
int | flags = 0 |
||
) | const [pure virtual, inherited] |
Predicts response(s) for the provided sample(s)
- Parameters:
-
samples The input samples, floating-point matrix results The optional output matrix of results. flags The optional flags, model-dependent. See cv::ml::StatModel::Flags.
Implemented in LogisticRegression.
Reads algorithm from the file node.
This is static template method of Algorithm. It's usage is following (in the case of SVM):
cv::FileStorage fsRead("example.xml", FileStorage::READ); Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());
In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn) and also have static create() method without parameters (or with all the optional parameters)
Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.
virtual void read | ( | const FileNode & | fn ) | [virtual, inherited] |
Reads algorithm parameters from a file storage.
Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.
virtual CV_WRAP void save | ( | const String & | filename ) | const [virtual, inherited] |
Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
virtual CV_WRAP void setAlgorithmType | ( | int | val ) | [pure virtual] |
Algorithm type, one of KNearest::Types.
- See also:
- getAlgorithmType
virtual CV_WRAP void setDefaultK | ( | int | val ) | [pure virtual] |
Default number of neighbors to use in predict method.
- See also:
- getDefaultK
virtual CV_WRAP void setEmax | ( | int | val ) | [pure virtual] |
Parameter for KDTree implementation.
- See also:
- getEmax
virtual CV_WRAP void setIsClassifier | ( | bool | val ) | [pure virtual] |
Whether classification or regression model should be trained.
- See also:
- getIsClassifier
virtual CV_WRAP bool train | ( | const Ptr< TrainData > & | trainData, |
int | flags = 0 |
||
) | [virtual, inherited] |
Trains the statistical model.
- Parameters:
-
trainData training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create. flags optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
virtual CV_WRAP bool train | ( | InputArray | samples, |
int | layout, | ||
InputArray | responses | ||
) | [virtual, inherited] |
Trains the statistical model.
- Parameters:
-
samples training samples layout See ml::SampleTypes. responses vector of responses associated with the training samples.
virtual void write | ( | FileStorage & | fs ) | const [virtual, inherited] |
Stores algorithm parameters in a file storage.
Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.
Generated on Tue Jul 12 2022 18:20:24 by
