Renesas / opencv-lib

Dependents:   RZ_A2M_Mbed_samples

Embed: (wiki syntax)

« Back to documentation index

BackgroundSubtractorMOG2 Class Reference

BackgroundSubtractorMOG2 Class Reference
[Motion Analysis]

Gaussian Mixture-based Background/Foreground Segmentation Algorithm. More...

#include <background_segm.hpp>

Inherits cv::BackgroundSubtractor.

Public Member Functions

virtual CV_WRAP int getHistory () const =0
 Returns the number of last frames that affect the background model.
virtual CV_WRAP void setHistory (int history)=0
 Sets the number of last frames that affect the background model.
virtual CV_WRAP int getNMixtures () const =0
 Returns the number of gaussian components in the background model.
virtual CV_WRAP void setNMixtures (int nmixtures)=0
 Sets the number of gaussian components in the background model.
virtual CV_WRAP double getBackgroundRatio () const =0
 Returns the "background ratio" parameter of the algorithm.
virtual CV_WRAP void setBackgroundRatio (double ratio)=0
 Sets the "background ratio" parameter of the algorithm.
virtual CV_WRAP double getVarThreshold () const =0
 Returns the variance threshold for the pixel-model match.
virtual CV_WRAP void setVarThreshold (double varThreshold)=0
 Sets the variance threshold for the pixel-model match.
virtual CV_WRAP double getVarThresholdGen () const =0
 Returns the variance threshold for the pixel-model match used for new mixture component generation.
virtual CV_WRAP void setVarThresholdGen (double varThresholdGen)=0
 Sets the variance threshold for the pixel-model match used for new mixture component generation.
virtual CV_WRAP double getVarInit () const =0
 Returns the initial variance of each gaussian component.
virtual CV_WRAP void setVarInit (double varInit)=0
 Sets the initial variance of each gaussian component.
virtual CV_WRAP double getComplexityReductionThreshold () const =0
 Returns the complexity reduction threshold.
virtual CV_WRAP void setComplexityReductionThreshold (double ct)=0
 Sets the complexity reduction threshold.
virtual CV_WRAP bool getDetectShadows () const =0
 Returns the shadow detection flag.
virtual CV_WRAP void setDetectShadows (bool detectShadows)=0
 Enables or disables shadow detection.
virtual CV_WRAP int getShadowValue () const =0
 Returns the shadow value.
virtual CV_WRAP void setShadowValue (int value)=0
 Sets the shadow value.
virtual CV_WRAP double getShadowThreshold () const =0
 Returns the shadow threshold.
virtual CV_WRAP void setShadowThreshold (double threshold)=0
 Sets the shadow threshold.
virtual CV_WRAP void apply (InputArray image, OutputArray fgmask, double learningRate=-1)=0
 Computes a foreground mask.
virtual CV_WRAP void getBackgroundImage (OutputArray backgroundImage) const =0
 Computes a background image.
virtual CV_WRAP void clear ()
 Clears the algorithm state.
virtual void write (FileStorage &fs) const
 Stores algorithm parameters in a file storage.
virtual void read (const FileNode &fn)
 Reads algorithm parameters from a file storage.
virtual bool empty () const
 Returns true if the Algorithm is empty (e.g.
virtual CV_WRAP void save (const String &filename) const
 Saves the algorithm to a file.
virtual CV_WRAP String getDefaultName () const
 Returns the algorithm string identifier.

Static Public Member Functions

template<typename _Tp >
static Ptr< _Tp > read (const FileNode &fn)
 Reads algorithm from the file node.
template<typename _Tp >
static Ptr< _Tp > load (const String &filename, const String &objname=String())
 Loads algorithm from the file.
template<typename _Tp >
static Ptr< _Tp > loadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String.

Detailed Description

Gaussian Mixture-based Background/Foreground Segmentation Algorithm.

The class implements the Gaussian mixture model background subtraction described in Zivkovic2004 and Zivkovic2006 .

Definition at line 90 of file background_segm.hpp.


Member Function Documentation

virtual CV_WRAP void apply ( InputArray  image,
OutputArray  fgmask,
double  learningRate = -1 
) [pure virtual, inherited]

Computes a foreground mask.

Parameters:
imageNext video frame.
fgmaskThe output foreground mask as an 8-bit binary image.
learningRateThe value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.
virtual CV_WRAP void clear (  ) [virtual, inherited]

Clears the algorithm state.

Reimplemented in DescriptorMatcher, and FlannBasedMatcher.

Definition at line 3030 of file core.hpp.

virtual bool empty (  ) const [virtual, inherited]

Returns true if the Algorithm is empty (e.g.

in the very beginning or after unsuccessful read

Reimplemented in Feature2D, DescriptorMatcher, and StatModel.

Definition at line 3042 of file core.hpp.

virtual CV_WRAP void getBackgroundImage ( OutputArray  backgroundImage ) const [pure virtual, inherited]

Computes a background image.

Parameters:
backgroundImageThe output background image.
Note:
Sometimes the background image can be very blurry, as it contain the average background statistics.
virtual CV_WRAP double getBackgroundRatio (  ) const [pure virtual]

Returns the "background ratio" parameter of the algorithm.

If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's considered background and added to the model as a center of a new component. It corresponds to TB parameter in the paper.

virtual CV_WRAP double getComplexityReductionThreshold (  ) const [pure virtual]

Returns the complexity reduction threshold.

This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05 is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the standard Stauffer&Grimson algorithm.

virtual CV_WRAP String getDefaultName (  ) const [virtual, inherited]

Returns the algorithm string identifier.

This string is used as top level xml/yml node tag when the object is saved to a file or string.

virtual CV_WRAP bool getDetectShadows (  ) const [pure virtual]

Returns the shadow detection flag.

If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for details.

virtual CV_WRAP int getHistory (  ) const [pure virtual]

Returns the number of last frames that affect the background model.

virtual CV_WRAP int getNMixtures (  ) const [pure virtual]

Returns the number of gaussian components in the background model.

virtual CV_WRAP double getShadowThreshold (  ) const [pure virtual]

Returns the shadow threshold.

A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra, Detecting Moving Shadows...*, IEEE PAMI,2003.

virtual CV_WRAP int getShadowValue (  ) const [pure virtual]

Returns the shadow value.

Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 in the mask always means background, 255 means foreground.

virtual CV_WRAP double getVarInit (  ) const [pure virtual]

Returns the initial variance of each gaussian component.

virtual CV_WRAP double getVarThreshold (  ) const [pure virtual]

Returns the variance threshold for the pixel-model match.

The main threshold on the squared Mahalanobis distance to decide if the sample is well described by the background model or not. Related to Cthr from the paper.

virtual CV_WRAP double getVarThresholdGen (  ) const [pure virtual]

Returns the variance threshold for the pixel-model match used for new mixture component generation.

Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it is considered foreground or added as a new component. 3 sigma => Tg=3\*3=9 is default. A smaller Tg value generates more components. A higher Tg value may result in a small number of components but they can grow too large.

static Ptr<_Tp> load ( const String &  filename,
const String &  objname = String() 
) [static, inherited]

Loads algorithm from the file.

Parameters:
filenameName of the file to read.
objnameThe optional name of the node to read (if empty, the first top-level node will be used)

This is static template method of Algorithm. It's usage is following (in the case of SVM):

     Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");

In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn).

Definition at line 3074 of file core.hpp.

static Ptr<_Tp> loadFromString ( const String &  strModel,
const String &  objname = String() 
) [static, inherited]

Loads algorithm from a String.

Parameters:
strModelThe string variable containing the model you want to load.
objnameThe optional name of the node to read (if empty, the first top-level node will be used)

This is static template method of Algorithm. It's usage is following (in the case of SVM):

     Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);

Definition at line 3094 of file core.hpp.

static Ptr<_Tp> read ( const FileNode fn ) [static, inherited]

Reads algorithm from the file node.

This is static template method of Algorithm. It's usage is following (in the case of SVM):

     cv::FileStorage fsRead("example.xml", FileStorage::READ);
     Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());

In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn) and also have static create() method without parameters (or with all the optional parameters)

Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.

Definition at line 3055 of file core.hpp.

virtual void read ( const FileNode fn ) [virtual, inherited]

Reads algorithm parameters from a file storage.

Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.

Definition at line 3038 of file core.hpp.

virtual CV_WRAP void save ( const String &  filename ) const [virtual, inherited]

Saves the algorithm to a file.

In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).

virtual CV_WRAP void setBackgroundRatio ( double  ratio ) [pure virtual]

Sets the "background ratio" parameter of the algorithm.

virtual CV_WRAP void setComplexityReductionThreshold ( double  ct ) [pure virtual]

Sets the complexity reduction threshold.

virtual CV_WRAP void setDetectShadows ( bool  detectShadows ) [pure virtual]

Enables or disables shadow detection.

virtual CV_WRAP void setHistory ( int  history ) [pure virtual]

Sets the number of last frames that affect the background model.

virtual CV_WRAP void setNMixtures ( int  nmixtures ) [pure virtual]

Sets the number of gaussian components in the background model.

The model needs to be reinitalized to reserve memory.

virtual CV_WRAP void setShadowThreshold ( double  threshold ) [pure virtual]

Sets the shadow threshold.

virtual CV_WRAP void setShadowValue ( int  value ) [pure virtual]

Sets the shadow value.

virtual CV_WRAP void setVarInit ( double  varInit ) [pure virtual]

Sets the initial variance of each gaussian component.

virtual CV_WRAP void setVarThreshold ( double  varThreshold ) [pure virtual]

Sets the variance threshold for the pixel-model match.

virtual CV_WRAP void setVarThresholdGen ( double  varThresholdGen ) [pure virtual]

Sets the variance threshold for the pixel-model match used for new mixture component generation.

virtual void write ( FileStorage fs ) const [virtual, inherited]

Stores algorithm parameters in a file storage.

Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.

Definition at line 3034 of file core.hpp.