Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: RZ_A2M_Mbed_samples
BackgroundSubtractorMOG2 Class Reference
[Motion Analysis]
Gaussian Mixture-based Background/Foreground Segmentation Algorithm. More...
#include <background_segm.hpp>
Inherits cv::BackgroundSubtractor.
Public Member Functions | |
virtual CV_WRAP int | getHistory () const =0 |
Returns the number of last frames that affect the background model. | |
virtual CV_WRAP void | setHistory (int history)=0 |
Sets the number of last frames that affect the background model. | |
virtual CV_WRAP int | getNMixtures () const =0 |
Returns the number of gaussian components in the background model. | |
virtual CV_WRAP void | setNMixtures (int nmixtures)=0 |
Sets the number of gaussian components in the background model. | |
virtual CV_WRAP double | getBackgroundRatio () const =0 |
Returns the "background ratio" parameter of the algorithm. | |
virtual CV_WRAP void | setBackgroundRatio (double ratio)=0 |
Sets the "background ratio" parameter of the algorithm. | |
virtual CV_WRAP double | getVarThreshold () const =0 |
Returns the variance threshold for the pixel-model match. | |
virtual CV_WRAP void | setVarThreshold (double varThreshold)=0 |
Sets the variance threshold for the pixel-model match. | |
virtual CV_WRAP double | getVarThresholdGen () const =0 |
Returns the variance threshold for the pixel-model match used for new mixture component generation. | |
virtual CV_WRAP void | setVarThresholdGen (double varThresholdGen)=0 |
Sets the variance threshold for the pixel-model match used for new mixture component generation. | |
virtual CV_WRAP double | getVarInit () const =0 |
Returns the initial variance of each gaussian component. | |
virtual CV_WRAP void | setVarInit (double varInit)=0 |
Sets the initial variance of each gaussian component. | |
virtual CV_WRAP double | getComplexityReductionThreshold () const =0 |
Returns the complexity reduction threshold. | |
virtual CV_WRAP void | setComplexityReductionThreshold (double ct)=0 |
Sets the complexity reduction threshold. | |
virtual CV_WRAP bool | getDetectShadows () const =0 |
Returns the shadow detection flag. | |
virtual CV_WRAP void | setDetectShadows (bool detectShadows)=0 |
Enables or disables shadow detection. | |
virtual CV_WRAP int | getShadowValue () const =0 |
Returns the shadow value. | |
virtual CV_WRAP void | setShadowValue (int value)=0 |
Sets the shadow value. | |
virtual CV_WRAP double | getShadowThreshold () const =0 |
Returns the shadow threshold. | |
virtual CV_WRAP void | setShadowThreshold (double threshold)=0 |
Sets the shadow threshold. | |
virtual CV_WRAP void | apply (InputArray image, OutputArray fgmask, double learningRate=-1)=0 |
Computes a foreground mask. | |
virtual CV_WRAP void | getBackgroundImage (OutputArray backgroundImage) const =0 |
Computes a background image. | |
virtual CV_WRAP void | clear () |
Clears the algorithm state. | |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage. | |
virtual void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage. | |
virtual bool | empty () const |
Returns true if the Algorithm is empty (e.g. | |
virtual CV_WRAP void | save (const String &filename) const |
Saves the algorithm to a file. | |
virtual CV_WRAP String | getDefaultName () const |
Returns the algorithm string identifier. | |
Static Public Member Functions | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node. | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file. | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String. |
Detailed Description
Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
The class implements the Gaussian mixture model background subtraction described in Zivkovic2004 and Zivkovic2006 .
Definition at line 90 of file background_segm.hpp.
Member Function Documentation
virtual CV_WRAP void apply | ( | InputArray | image, |
OutputArray | fgmask, | ||
double | learningRate = -1 |
||
) | [pure virtual, inherited] |
Computes a foreground mask.
- Parameters:
-
image Next video frame. fgmask The output foreground mask as an 8-bit binary image. learningRate The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.
virtual CV_WRAP void clear | ( | ) | [virtual, inherited] |
Clears the algorithm state.
Reimplemented in DescriptorMatcher, and FlannBasedMatcher.
virtual bool empty | ( | ) | const [virtual, inherited] |
virtual CV_WRAP void getBackgroundImage | ( | OutputArray | backgroundImage ) | const [pure virtual, inherited] |
Computes a background image.
- Parameters:
-
backgroundImage The output background image.
- Note:
- Sometimes the background image can be very blurry, as it contain the average background statistics.
virtual CV_WRAP double getBackgroundRatio | ( | ) | const [pure virtual] |
Returns the "background ratio" parameter of the algorithm.
If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's considered background and added to the model as a center of a new component. It corresponds to TB parameter in the paper.
virtual CV_WRAP double getComplexityReductionThreshold | ( | ) | const [pure virtual] |
Returns the complexity reduction threshold.
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05 is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the standard Stauffer&Grimson algorithm.
virtual CV_WRAP String getDefaultName | ( | ) | const [virtual, inherited] |
Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
virtual CV_WRAP bool getDetectShadows | ( | ) | const [pure virtual] |
Returns the shadow detection flag.
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for details.
virtual CV_WRAP int getHistory | ( | ) | const [pure virtual] |
Returns the number of last frames that affect the background model.
virtual CV_WRAP int getNMixtures | ( | ) | const [pure virtual] |
Returns the number of gaussian components in the background model.
virtual CV_WRAP double getShadowThreshold | ( | ) | const [pure virtual] |
Returns the shadow threshold.
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra, Detecting Moving Shadows...*, IEEE PAMI,2003.
virtual CV_WRAP int getShadowValue | ( | ) | const [pure virtual] |
Returns the shadow value.
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 in the mask always means background, 255 means foreground.
virtual CV_WRAP double getVarInit | ( | ) | const [pure virtual] |
Returns the initial variance of each gaussian component.
virtual CV_WRAP double getVarThreshold | ( | ) | const [pure virtual] |
Returns the variance threshold for the pixel-model match.
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by the background model or not. Related to Cthr from the paper.
virtual CV_WRAP double getVarThresholdGen | ( | ) | const [pure virtual] |
Returns the variance threshold for the pixel-model match used for new mixture component generation.
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it is considered foreground or added as a new component. 3 sigma => Tg=3\*3=9 is default. A smaller Tg value generates more components. A higher Tg value may result in a small number of components but they can grow too large.
static Ptr<_Tp> load | ( | const String & | filename, |
const String & | objname = String() |
||
) | [static, inherited] |
Loads algorithm from the file.
- Parameters:
-
filename Name of the file to read. objname The optional name of the node to read (if empty, the first top-level node will be used)
This is static template method of Algorithm. It's usage is following (in the case of SVM):
Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn).
static Ptr<_Tp> loadFromString | ( | const String & | strModel, |
const String & | objname = String() |
||
) | [static, inherited] |
Loads algorithm from a String.
- Parameters:
-
strModel The string variable containing the model you want to load. objname The optional name of the node to read (if empty, the first top-level node will be used)
This is static template method of Algorithm. It's usage is following (in the case of SVM):
Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);
Reads algorithm from the file node.
This is static template method of Algorithm. It's usage is following (in the case of SVM):
cv::FileStorage fsRead("example.xml", FileStorage::READ); Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());
In order to make this method work, the derived class must overwrite Algorithm::read(const FileNode& fn) and also have static create() method without parameters (or with all the optional parameters)
Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.
virtual void read | ( | const FileNode & | fn ) | [virtual, inherited] |
Reads algorithm parameters from a file storage.
Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.
virtual CV_WRAP void save | ( | const String & | filename ) | const [virtual, inherited] |
Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
virtual CV_WRAP void setBackgroundRatio | ( | double | ratio ) | [pure virtual] |
Sets the "background ratio" parameter of the algorithm.
virtual CV_WRAP void setComplexityReductionThreshold | ( | double | ct ) | [pure virtual] |
Sets the complexity reduction threshold.
virtual CV_WRAP void setDetectShadows | ( | bool | detectShadows ) | [pure virtual] |
Enables or disables shadow detection.
virtual CV_WRAP void setHistory | ( | int | history ) | [pure virtual] |
Sets the number of last frames that affect the background model.
virtual CV_WRAP void setNMixtures | ( | int | nmixtures ) | [pure virtual] |
Sets the number of gaussian components in the background model.
The model needs to be reinitalized to reserve memory.
virtual CV_WRAP void setShadowThreshold | ( | double | threshold ) | [pure virtual] |
Sets the shadow threshold.
virtual CV_WRAP void setShadowValue | ( | int | value ) | [pure virtual] |
Sets the shadow value.
virtual CV_WRAP void setVarInit | ( | double | varInit ) | [pure virtual] |
Sets the initial variance of each gaussian component.
virtual CV_WRAP void setVarThreshold | ( | double | varThreshold ) | [pure virtual] |
Sets the variance threshold for the pixel-model match.
virtual CV_WRAP void setVarThresholdGen | ( | double | varThresholdGen ) | [pure virtual] |
Sets the variance threshold for the pixel-model match used for new mixture component generation.
virtual void write | ( | FileStorage & | fs ) | const [virtual, inherited] |
Stores algorithm parameters in a file storage.
Reimplemented in Feature2D, DescriptorMatcher, and FlannBasedMatcher.
Generated on Tue Jul 12 2022 18:20:24 by
