Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
Diff: cmsis_dsp/TransformFunctions/arm_rfft_q31.c
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
diff -r 83d0537c7d84 -r fdd22bb7aa52 cmsis_dsp/TransformFunctions/arm_rfft_q31.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cmsis_dsp/TransformFunctions/arm_rfft_q31.c Wed Nov 28 12:30:09 2012 +0000 @@ -0,0 +1,326 @@ +/* ---------------------------------------------------------------------- +* Copyright (C) 2010 ARM Limited. All rights reserved. +* +* $Date: 15. February 2012 +* $Revision: V1.1.0 +* +* Project: CMSIS DSP Library +* Title: arm_rfft_q31.c +* +* Description: RFFT & RIFFT Q31 process function +* +* +* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 +* +* Version 1.1.0 2012/02/15 +* Updated with more optimizations, bug fixes and minor API changes. +* +* Version 1.0.10 2011/7/15 +* Big Endian support added and Merged M0 and M3/M4 Source code. +* +* Version 1.0.3 2010/11/29 +* Re-organized the CMSIS folders and updated documentation. +* +* Version 1.0.2 2010/11/11 +* Documentation updated. +* +* Version 1.0.1 2010/10/05 +* Production release and review comments incorporated. +* +* Version 1.0.0 2010/09/20 +* Production release and review comments incorporated. +* +* Version 0.0.7 2010/06/10 +* Misra-C changes done +* -------------------------------------------------------------------- */ + +#include "arm_math.h" + +/*-------------------------------------------------------------------- +* Internal functions prototypes +--------------------------------------------------------------------*/ + +void arm_split_rfft_q31( + q31_t * pSrc, + uint32_t fftLen, + q31_t * pATable, + q31_t * pBTable, + q31_t * pDst, + uint32_t modifier); + +void arm_split_rifft_q31( + q31_t * pSrc, + uint32_t fftLen, + q31_t * pATable, + q31_t * pBTable, + q31_t * pDst, + uint32_t modifier); + +/** + * @addtogroup RFFT_RIFFT + * @{ + */ + +/** + * @brief Processing function for the Q31 RFFT/RIFFT. + * @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure. + * @param[in] *pSrc points to the input buffer. + * @param[out] *pDst points to the output buffer. + * @return none. + * + * \par Input an output formats: + * \par + * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. + * Hence the output format is different for different RFFT sizes. + * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT: + * \par + * \image html RFFTQ31.gif "Input and Output Formats for Q31 RFFT" + * + * \par + * \image html RIFFTQ31.gif "Input and Output Formats for Q31 RIFFT" + */ + +void arm_rfft_q31( + const arm_rfft_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst) +{ + const arm_cfft_radix4_instance_q31 *S_CFFT = S->pCfft; + + /* Calculation of RIFFT of input */ + if(S->ifftFlagR == 1u) + { + /* Real IFFT core process */ + arm_split_rifft_q31(pSrc, S->fftLenBy2, S->pTwiddleAReal, + S->pTwiddleBReal, pDst, S->twidCoefRModifier); + + /* Complex readix-4 IFFT process */ + arm_radix4_butterfly_inverse_q31(pDst, S_CFFT->fftLen, + S_CFFT->pTwiddle, + S_CFFT->twidCoefModifier); + /* Bit reversal process */ + if(S->bitReverseFlagR == 1u) + { + arm_bitreversal_q31(pDst, S_CFFT->fftLen, + S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); + } + } + else + { + /* Calculation of RFFT of input */ + + /* Complex readix-4 FFT process */ + arm_radix4_butterfly_q31(pSrc, S_CFFT->fftLen, + S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); + + /* Bit reversal process */ + if(S->bitReverseFlagR == 1u) + { + arm_bitreversal_q31(pSrc, S_CFFT->fftLen, + S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); + } + + /* Real FFT core process */ + arm_split_rfft_q31(pSrc, S->fftLenBy2, S->pTwiddleAReal, + S->pTwiddleBReal, pDst, S->twidCoefRModifier); + } + +} + + + /** + * @} end of RFFT_RIFFT group + */ + +/** + * @brief Core Real FFT process + * @param[in] *pSrc points to the input buffer. + * @param[in] fftLen length of FFT. + * @param[in] *pATable points to the twiddle Coef A buffer. + * @param[in] *pBTable points to the twiddle Coef B buffer. + * @param[out] *pDst points to the output buffer. + * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. + * @return none. + */ + +void arm_split_rfft_q31( + q31_t * pSrc, + uint32_t fftLen, + q31_t * pATable, + q31_t * pBTable, + q31_t * pDst, + uint32_t modifier) +{ + uint32_t i; /* Loop Counter */ + q31_t outR, outI; /* Temporary variables for output */ + q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ + q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ + q31_t *pOut1 = &pDst[2], *pOut2 = &pDst[(4u * fftLen) - 1u]; + q31_t *pIn1 = &pSrc[2], *pIn2 = &pSrc[(2u * fftLen) - 1u]; + + /* Init coefficient pointers */ + pCoefA = &pATable[modifier * 2u]; + pCoefB = &pBTable[modifier * 2u]; + + i = fftLen - 1u; + + while(i > 0u) + { + /* + outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + + pSrc[2 * n - 2 * i] * pBTable[2 * i] + + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); + */ + + /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - + pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ + + CoefA1 = *pCoefA++; + CoefA2 = *pCoefA; + + /* outR = (pSrc[2 * i] * pATable[2 * i] */ + outR = ((int32_t) (((q63_t) * pIn1 * CoefA1) >> 32)); + + /* outI = pIn[2 * i] * pATable[2 * i + 1] */ + outI = ((int32_t) (((q63_t) * pIn1++ * CoefA2) >> 32)); + + /* - pSrc[2 * i + 1] * pATable[2 * i + 1] */ + outR = + (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn1 * (-CoefA2))) >> 32); + + /* (pIn[2 * i + 1] * pATable[2 * i] */ + outI = + (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn1++ * (CoefA1))) >> 32); + + /* pSrc[2 * n - 2 * i] * pBTable[2 * i] */ + outR = + (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (-CoefA2))) >> 32); + CoefB1 = *pCoefB; + + /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */ + outI = + (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (-CoefB1))) >> 32); + + /* pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */ + outR = + (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefB1))) >> 32); + + /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ + outI = + (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (-CoefA2))) >> 32); + + /* write output */ + *pOut1++ = (outR << 1u); + *pOut1++ = (outI << 1u); + + /* write complex conjugate output */ + *pOut2-- = -(outI << 1u); + *pOut2-- = (outR << 1u); + + /* update coefficient pointer */ + pCoefB = pCoefB + (modifier * 2u); + pCoefA = pCoefA + ((modifier * 2u) - 1u); + + i--; + + } + + pDst[2u * fftLen] = pSrc[0] - pSrc[1]; + pDst[(2u * fftLen) + 1u] = 0; + + pDst[0] = pSrc[0] + pSrc[1]; + pDst[1] = 0; + +} + + +/** + * @brief Core Real IFFT process + * @param[in] *pSrc points to the input buffer. + * @param[in] fftLen length of FFT. + * @param[in] *pATable points to the twiddle Coef A buffer. + * @param[in] *pBTable points to the twiddle Coef B buffer. + * @param[out] *pDst points to the output buffer. + * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. + * @return none. + */ + +void arm_split_rifft_q31( + q31_t * pSrc, + uint32_t fftLen, + q31_t * pATable, + q31_t * pBTable, + q31_t * pDst, + uint32_t modifier) +{ + q31_t outR, outI; /* Temporary variables for output */ + q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ + q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ + q31_t *pIn1 = &pSrc[0], *pIn2 = &pSrc[(2u * fftLen) + 1u]; + + pCoefA = &pATable[0]; + pCoefB = &pBTable[0]; + + while(fftLen > 0u) + { + /* + outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + + pIn[2 * n - 2 * i] * pBTable[2 * i] - + pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); + + outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - + pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); + + */ + CoefA1 = *pCoefA++; + CoefA2 = *pCoefA; + + /* outR = (pIn[2 * i] * pATable[2 * i] */ + outR = ((int32_t) (((q63_t) * pIn1 * CoefA1) >> 32)); + + /* - pIn[2 * i] * pATable[2 * i + 1] */ + outI = -((int32_t) (((q63_t) * pIn1++ * CoefA2) >> 32)); + + /* pIn[2 * i + 1] * pATable[2 * i + 1] */ + outR = + (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn1 * (CoefA2))) >> 32); + + /* pIn[2 * i + 1] * pATable[2 * i] */ + outI = + (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn1++ * (CoefA1))) >> 32); + + /* pIn[2 * n - 2 * i] * pBTable[2 * i] */ + outR = + (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefA2))) >> 32); + + CoefB1 = *pCoefB; + + /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */ + outI = + (q31_t) ((((q63_t) outI << 32) - ((q63_t) * pIn2-- * (CoefB1))) >> 32); + + /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */ + outR = + (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefB1))) >> 32); + + /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ + outI = + (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (CoefA2))) >> 32); + + /* write output */ + *pDst++ = (outR << 1u); + *pDst++ = (outI << 1u); + + /* update coefficient pointer */ + pCoefB = pCoefB + (modifier * 2u); + pCoefA = pCoefA + ((modifier * 2u) - 1u); + + /* Decrement loop count */ + fftLen--; + + } + + +}