Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
Diff: cmsis_dsp/BasicMathFunctions/arm_mult_q15.c
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
diff -r 83d0537c7d84 -r fdd22bb7aa52 cmsis_dsp/BasicMathFunctions/arm_mult_q15.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cmsis_dsp/BasicMathFunctions/arm_mult_q15.c Wed Nov 28 12:30:09 2012 +0000 @@ -0,0 +1,152 @@ +/* ---------------------------------------------------------------------- +* Copyright (C) 2010 ARM Limited. All rights reserved. +* +* $Date: 15. February 2012 +* $Revision: V1.1.0 +* +* Project: CMSIS DSP Library +* Title: arm_mult_q15.c +* +* Description: Q15 vector multiplication. +* +* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 +* +* Version 1.1.0 2012/02/15 +* Updated with more optimizations, bug fixes and minor API changes. +* +* Version 1.0.10 2011/7/15 +* Big Endian support added and Merged M0 and M3/M4 Source code. +* +* Version 1.0.3 2010/11/29 +* Re-organized the CMSIS folders and updated documentation. +* +* Version 1.0.2 2010/11/11 +* Documentation updated. +* +* Version 1.0.1 2010/10/05 +* Production release and review comments incorporated. +* +* Version 1.0.0 2010/09/20 +* Production release and review comments incorporated. +* +* Version 0.0.5 2010/04/26 +* incorporated review comments and updated with latest CMSIS layer +* +* Version 0.0.3 2010/03/10 +* Initial version +* -------------------------------------------------------------------- */ + +#include "arm_math.h" + +/** + * @ingroup groupMath + */ + +/** + * @addtogroup BasicMult + * @{ + */ + + +/** + * @brief Q15 vector multiplication + * @param[in] *pSrcA points to the first input vector + * @param[in] *pSrcB points to the second input vector + * @param[out] *pDst points to the output vector + * @param[in] blockSize number of samples in each vector + * @return none. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function uses saturating arithmetic. + * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. + */ + +void arm_mult_q15( + q15_t * pSrcA, + q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize) +{ + uint32_t blkCnt; /* loop counters */ + +#ifndef ARM_MATH_CM0 + +/* Run the below code for Cortex-M4 and Cortex-M3 */ + q31_t inA1, inA2, inB1, inB2; /* temporary input variables */ + q15_t out1, out2, out3, out4; /* temporary output variables */ + q31_t mul1, mul2, mul3, mul4; /* temporary variables */ + + /* loop Unrolling */ + blkCnt = blockSize >> 2u; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while(blkCnt > 0u) + { + /* read two samples at a time from sourceA */ + inA1 = *__SIMD32(pSrcA)++; + /* read two samples at a time from sourceB */ + inB1 = *__SIMD32(pSrcB)++; + /* read two samples at a time from sourceA */ + inA2 = *__SIMD32(pSrcA)++; + /* read two samples at a time from sourceB */ + inB2 = *__SIMD32(pSrcB)++; + + /* multiply mul = sourceA * sourceB */ + mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16)); + mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1); + mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16)); + mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2); + + /* saturate result to 16 bit */ + out1 = (q15_t) __SSAT(mul1 >> 15, 16); + out2 = (q15_t) __SSAT(mul2 >> 15, 16); + out3 = (q15_t) __SSAT(mul3 >> 15, 16); + out4 = (q15_t) __SSAT(mul4 >> 15, 16); + + /* store the result */ +#ifndef ARM_MATH_BIG_ENDIAN + + *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16); + *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16); + +#else + + *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16); + *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16); + +#endif // #ifndef ARM_MATH_BIG_ENDIAN + + /* Decrement the blockSize loop counter */ + blkCnt--; + } + + /* If the blockSize is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = blockSize % 0x4u; + +#else + + /* Run the below code for Cortex-M0 */ + + /* Initialize blkCnt with number of samples */ + blkCnt = blockSize; + +#endif /* #ifndef ARM_MATH_CM0 */ + + + while(blkCnt > 0u) + { + /* C = A * B */ + /* Multiply the inputs and store the result in the destination buffer */ + *pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16); + + /* Decrement the blockSize loop counter */ + blkCnt--; + } +} + +/** + * @} end of BasicMult group + */