Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
diff -r 83d0537c7d84 -r fdd22bb7aa52 cmsis_dsp/BasicMathFunctions/arm_mult_q15.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/BasicMathFunctions/arm_mult_q15.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,152 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010 ARM Limited. All rights reserved.    
+*    
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*    
+* Project:         CMSIS DSP Library    
+* Title:        arm_mult_q15.c    
+*    
+* Description:    Q15 vector multiplication.    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+*   
+* Version 1.0.10 2011/7/15  
+*    Big Endian support added and Merged M0 and M3/M4 Source code.   
+*    
+* Version 1.0.3 2010/11/29   
+*    Re-organized the CMSIS folders and updated documentation.    
+*     
+* Version 1.0.2 2010/11/11    
+*    Documentation updated.     
+*    
+* Version 1.0.1 2010/10/05     
+*    Production release and review comments incorporated.    
+*    
+* Version 1.0.0 2010/09/20     
+*    Production release and review comments incorporated.    
+*    
+* Version 0.0.5  2010/04/26     
+*    incorporated review comments and updated with latest CMSIS layer    
+*    
+* Version 0.0.3  2010/03/10     
+*    Initial version    
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**    
+ * @ingroup groupMath    
+ */
+
+/**    
+ * @addtogroup BasicMult    
+ * @{    
+ */
+
+
+/**    
+ * @brief           Q15 vector multiplication    
+ * @param[in]       *pSrcA points to the first input vector    
+ * @param[in]       *pSrcB points to the second input vector    
+ * @param[out]      *pDst points to the output vector    
+ * @param[in]       blockSize number of samples in each vector    
+ * @return none.    
+ *    
+ * <b>Scaling and Overflow Behavior:</b>    
+ * \par    
+ * The function uses saturating arithmetic.    
+ * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.    
+ */
+
+void arm_mult_q15(
+  q15_t * pSrcA,
+  q15_t * pSrcB,
+  q15_t * pDst,
+  uint32_t blockSize)
+{
+  uint32_t blkCnt;                               /* loop counters */
+
+#ifndef ARM_MATH_CM0
+
+/* Run the below code for Cortex-M4 and Cortex-M3 */
+  q31_t inA1, inA2, inB1, inB2;                  /* temporary input variables */
+  q15_t out1, out2, out3, out4;                  /* temporary output variables */
+  q31_t mul1, mul2, mul3, mul4;                  /* temporary variables */
+
+  /* loop Unrolling */
+  blkCnt = blockSize >> 2u;
+
+  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.        
+   ** a second loop below computes the remaining 1 to 3 samples. */
+  while(blkCnt > 0u)
+  {
+    /* read two samples at a time from sourceA */
+    inA1 = *__SIMD32(pSrcA)++;
+    /* read two samples at a time from sourceB */
+    inB1 = *__SIMD32(pSrcB)++;
+    /* read two samples at a time from sourceA */
+    inA2 = *__SIMD32(pSrcA)++;
+    /* read two samples at a time from sourceB */
+    inB2 = *__SIMD32(pSrcB)++;
+
+    /* multiply mul = sourceA * sourceB */
+    mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
+    mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
+    mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
+    mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);
+
+    /* saturate result to 16 bit */
+    out1 = (q15_t) __SSAT(mul1 >> 15, 16);
+    out2 = (q15_t) __SSAT(mul2 >> 15, 16);
+    out3 = (q15_t) __SSAT(mul3 >> 15, 16);
+    out4 = (q15_t) __SSAT(mul4 >> 15, 16);
+
+    /* store the result */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
+    *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
+
+#else
+
+    *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
+    *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
+
+#endif //      #ifndef ARM_MATH_BIG_ENDIAN
+
+    /* Decrement the blockSize loop counter */
+    blkCnt--;
+  }
+
+  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
+   ** No loop unrolling is used. */
+  blkCnt = blockSize % 0x4u;
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  /* Initialize blkCnt with number of samples */
+  blkCnt = blockSize;
+
+#endif /* #ifndef ARM_MATH_CM0 */
+
+
+  while(blkCnt > 0u)
+  {
+    /* C = A * B */
+    /* Multiply the inputs and store the result in the destination buffer */
+    *pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
+
+    /* Decrement the blockSize loop counter */
+    blkCnt--;
+  }
+}
+
+/**    
+ * @} end of BasicMult group    
+ */