Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
Diff: cmsis_dsp/MatrixFunctions/arm_mat_inverse_f32.c
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
diff -r fdd22bb7aa52 -r da51fb522205 cmsis_dsp/MatrixFunctions/arm_mat_inverse_f32.c --- a/cmsis_dsp/MatrixFunctions/arm_mat_inverse_f32.c Wed Nov 28 12:30:09 2012 +0000 +++ b/cmsis_dsp/MatrixFunctions/arm_mat_inverse_f32.c Thu May 30 17:10:11 2013 +0100 @@ -2,12 +2,12 @@ * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 -* $Revision: V1.1.0 +* $Revision: V1.1.0 * -* Project: CMSIS DSP Library -* Title: arm_mat_inverse_f32.c +* Project: CMSIS DSP Library +* Title: arm_mat_inverse_f32.c * -* Description: Floating-point matrix inverse. +* Description: Floating-point matrix inverse. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * @@ -67,7 +67,7 @@ * @brief Floating-point matrix inverse. * @param[in] *pSrc points to input matrix structure * @param[out] *pDst points to output matrix structure - * @return The function returns + * @return The function returns * <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size * of the output matrix does not match the size of the input matrix. * If the input matrix is found to be singular (non-invertible), then the function returns @@ -110,39 +110,39 @@ { /*-------------------------------------------------------------------------------------------------------------- - * Matrix Inverse can be solved using elementary row operations. - * - * Gauss-Jordan Method: - * - * 1. First combine the identity matrix and the input matrix separated by a bar to form an - * augmented matrix as follows: - * _ _ _ _ - * | a11 a12 | 1 0 | | X11 X12 | - * | | | = | | - * |_ a21 a22 | 0 1 _| |_ X21 X21 _| - * - * 2. In our implementation, pDst Matrix is used as identity matrix. - * - * 3. Begin with the first row. Let i = 1. - * - * 4. Check to see if the pivot for row i is zero. - * The pivot is the element of the main diagonal that is on the current row. - * For instance, if working with row i, then the pivot element is aii. - * If the pivot is zero, exchange that row with a row below it that does not - * contain a zero in column i. If this is not possible, then an inverse - * to that matrix does not exist. - * - * 5. Divide every element of row i by the pivot. - * - * 6. For every row below and row i, replace that row with the sum of that row and - * a multiple of row i so that each new element in column i below row i is zero. - * - * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros - * for every element below and above the main diagonal. - * - * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc). - * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst). - *----------------------------------------------------------------------------------------------------------------*/ + * Matrix Inverse can be solved using elementary row operations. + * + * Gauss-Jordan Method: + * + * 1. First combine the identity matrix and the input matrix separated by a bar to form an + * augmented matrix as follows: + * _ _ _ _ + * | a11 a12 | 1 0 | | X11 X12 | + * | | | = | | + * |_ a21 a22 | 0 1 _| |_ X21 X21 _| + * + * 2. In our implementation, pDst Matrix is used as identity matrix. + * + * 3. Begin with the first row. Let i = 1. + * + * 4. Check to see if the pivot for row i is zero. + * The pivot is the element of the main diagonal that is on the current row. + * For instance, if working with row i, then the pivot element is aii. + * If the pivot is zero, exchange that row with a row below it that does not + * contain a zero in column i. If this is not possible, then an inverse + * to that matrix does not exist. + * + * 5. Divide every element of row i by the pivot. + * + * 6. For every row below and row i, replace that row with the sum of that row and + * a multiple of row i so that each new element in column i below row i is zero. + * + * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros + * for every element below and above the main diagonal. + * + * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc). + * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst). + *----------------------------------------------------------------------------------------------------------------*/ /* Working pointer for destination matrix */ pInT2 = pOut; @@ -421,39 +421,39 @@ { /*-------------------------------------------------------------------------------------------------------------- - * Matrix Inverse can be solved using elementary row operations. - * - * Gauss-Jordan Method: - * - * 1. First combine the identity matrix and the input matrix separated by a bar to form an - * augmented matrix as follows: - * _ _ _ _ _ _ _ _ - * | | a11 a12 | | | 1 0 | | | X11 X12 | - * | | | | | | | = | | - * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _| - * - * 2. In our implementation, pDst Matrix is used as identity matrix. - * - * 3. Begin with the first row. Let i = 1. - * - * 4. Check to see if the pivot for row i is zero. - * The pivot is the element of the main diagonal that is on the current row. - * For instance, if working with row i, then the pivot element is aii. - * If the pivot is zero, exchange that row with a row below it that does not - * contain a zero in column i. If this is not possible, then an inverse - * to that matrix does not exist. - * - * 5. Divide every element of row i by the pivot. - * - * 6. For every row below and row i, replace that row with the sum of that row and - * a multiple of row i so that each new element in column i below row i is zero. - * - * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros - * for every element below and above the main diagonal. - * - * 8. Now an identical matrix is formed to the left of the bar(input matrix, src). - * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst). - *----------------------------------------------------------------------------------------------------------------*/ + * Matrix Inverse can be solved using elementary row operations. + * + * Gauss-Jordan Method: + * + * 1. First combine the identity matrix and the input matrix separated by a bar to form an + * augmented matrix as follows: + * _ _ _ _ _ _ _ _ + * | | a11 a12 | | | 1 0 | | | X11 X12 | + * | | | | | | | = | | + * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _| + * + * 2. In our implementation, pDst Matrix is used as identity matrix. + * + * 3. Begin with the first row. Let i = 1. + * + * 4. Check to see if the pivot for row i is zero. + * The pivot is the element of the main diagonal that is on the current row. + * For instance, if working with row i, then the pivot element is aii. + * If the pivot is zero, exchange that row with a row below it that does not + * contain a zero in column i. If this is not possible, then an inverse + * to that matrix does not exist. + * + * 5. Divide every element of row i by the pivot. + * + * 6. For every row below and row i, replace that row with the sum of that row and + * a multiple of row i so that each new element in column i below row i is zero. + * + * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros + * for every element below and above the main diagonal. + * + * 8. Now an identical matrix is formed to the left of the bar(input matrix, src). + * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst). + *----------------------------------------------------------------------------------------------------------------*/ /* Working pointer for destination matrix */ pInT2 = pOut;