Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
Diff: cmsis_dsp/TransformFunctions/arm_cfft_f32.c
- Revision:
- 5:a912b042151f
- Parent:
- 4:9cee975aadce
diff -r 9cee975aadce -r a912b042151f cmsis_dsp/TransformFunctions/arm_cfft_f32.c --- a/cmsis_dsp/TransformFunctions/arm_cfft_f32.c Mon Jun 23 09:30:09 2014 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,616 +0,0 @@ -/* ---------------------------------------------------------------------- -* Copyright (C) 2010-2013 ARM Limited. All rights reserved. -* -* $Date: 17. January 2013 -* $Revision: V1.4.1 -* -* Project: CMSIS DSP Library -* Title: arm_cfft_f32.c -* -* Description: Combined Radix Decimation in Frequency CFFT Floating point processing function -* -* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 -* -* Redistribution and use in source and binary forms, with or without -* modification, are permitted provided that the following conditions -* are met: -* - Redistributions of source code must retain the above copyright -* notice, this list of conditions and the following disclaimer. -* - Redistributions in binary form must reproduce the above copyright -* notice, this list of conditions and the following disclaimer in -* the documentation and/or other materials provided with the -* distribution. -* - Neither the name of ARM LIMITED nor the names of its contributors -* may be used to endorse or promote products derived from this -* software without specific prior written permission. -* -* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, -* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT -* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN -* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -* POSSIBILITY OF SUCH DAMAGE. -* -------------------------------------------------------------------- */ - - -#include "arm_math.h" -#include "arm_common_tables.h" - -extern void arm_radix8_butterfly_f32( - float32_t * pSrc, - uint16_t fftLen, - const float32_t * pCoef, - uint16_t twidCoefModifier); - -extern void arm_bitreversal_32( - uint32_t * pSrc, - const uint16_t bitRevLen, - const uint16_t * pBitRevTable); - -/** -* @ingroup groupTransforms -*/ - -/** -* @defgroup ComplexFFT Complex FFT Functions -* -* \par -* The Fast Fourier Transform (FFT) is an efficient algorithm for computing the -* Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster -* than the DFT, especially for long lengths. -* The algorithms described in this section -* operate on complex data. A separate set of functions is devoted to handling -* of real sequences. -* \par -* There are separate algorithms for handling floating-point, Q15, and Q31 data -* types. The algorithms available for each data type are described next. -* \par -* The FFT functions operate in-place. That is, the array holding the input data -* will also be used to hold the corresponding result. The input data is complex -* and contains <code>2*fftLen</code> interleaved values as shown below. -* <pre> {real[0], imag[0], real[1], imag[1],..} </pre> -* The FFT result will be contained in the same array and the frequency domain -* values will have the same interleaving. -* -* \par Floating-point -* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 -* stages are performed along with a single radix-2 or radix-4 stage, as needed. -* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses -* a different twiddle factor table. -* \par -* The function uses the standard FFT definition and output values may grow by a -* factor of <code>fftLen</code> when computing the forward transform. The -* inverse transform includes a scale of <code>1/fftLen</code> as part of the -* calculation and this matches the textbook definition of the inverse FFT. -* \par -* Preinitialized data structures containing twiddle factors and bit reversal -* tables are provided and defined in <code>arm_const_structs.h</code>. Include -* this header in your function and then pass one of the constant structures as -* an argument to arm_cfft_f32. For example: -* \par -* <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code> -* \par -* computes a 64-point inverse complex FFT including bit reversal. -* The data structures are treated as constant data and not modified during the -* calculation. The same data structure can be reused for multiple transforms -* including mixing forward and inverse transforms. -* \par -* Earlier releases of the library provided separate radix-2 and radix-4 -* algorithms that operated on floating-point data. These functions are still -* provided but are deprecated. The older functions are slower and less general -* than the new functions. -* \par -* An example of initialization of the constants for the arm_cfft_f32 function follows: -* \par -* const static arm_cfft_instance_f32 *S; -* ... -* switch (length) { -* case 16: -* S = & arm_cfft_sR_f32_len16; -* break; -* case 32: -* S = & arm_cfft_sR_f32_len32; -* break; -* case 64: -* S = & arm_cfft_sR_f32_len64; -* break; -* case 128: -* S = & arm_cfft_sR_f32_len128; -* break; -* case 256: -* S = & arm_cfft_sR_f32_len256; -* break; -* case 512: -* S = & arm_cfft_sR_f32_len512; -* break; -* case 1024: -* S = & arm_cfft_sR_f32_len1024; -* break; -* case 2048: -* S = & arm_cfft_sR_f32_len2048; -* break; -* case 4096: -* S = & arm_cfft_sR_f32_len4096; -* break; -* } -* \par Q15 and Q31 -* The library provides radix-2 and radix-4 FFT algorithms for fixed-point data. The -* radix-2 algorithm supports lengths of [16, 32, 64, ..., 4096]. The radix-4 -* algorithm supports lengths of [16, 64, 256, ..., 4096]. When possible, you -* should use the radix-4 algorithm since it is faster than the radix-2 of the -* same length. -* \par -* The forward FFTs include scaling in order to prevent results from overflowing. -* Intermediate results are scaled down during each butterfly stage. In the -* radix-2 algorithm, a scale of 0.5 is applied during each butterfly. In the -* radix-4 algorithm, a scale of 0.25 is applied. The scaling applies to both -* the forward and the inverse FFTs. Thus the forward FFT contains an additional -* scale factor of <code>1/fftLen</code> as compared to the standard textbook -* definition of the FFT. The inverse FFT also scales down during each butterfly -* stage and this corresponds to the standard textbook definition. -* \par -* A separate instance structure must be defined for each transform used but -* twiddle factor and bit reversal tables can be reused. -* \par -* There is also an associated initialization function for each data type. -* The initialization function performs the following operations: -* - Sets the values of the internal structure fields. -* - Initializes twiddle factor table and bit reversal table pointers. -* \par -* Use of the initialization function is optional. -* However, if the initialization function is used, then the instance structure -* cannot be placed into a const data section. To place an instance structure -* into a const data section, the instance structure should be manually -* initialized as follows: -* <pre> -*arm_cfft_radix2_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor}; -*arm_cfft_radix2_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor}; -*arm_cfft_radix4_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor}; -*arm_cfft_radix4_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor}; -*arm_cfft_instance_f32 S = {fftLen, pTwiddle, pBitRevTable, bitRevLength}; -* </pre> -* \par -* where <code>fftLen</code> length of CFFT/CIFFT; <code>ifftFlag</code> Flag for -* selection of forward or inverse transform. When ifftFlag is set the inverse -* transform is calculated. -* <code>bitReverseFlag</code> Flag for selection of output order (Set bitReverseFlag to output in normal order otherwise output in bit reversed order); -* <code>pTwiddle</code>points to array of twiddle coefficients; <code>pBitRevTable</code> points to the bit reversal table. -* <code>twidCoefModifier</code> modifier for twiddle factor table which supports all FFT lengths with same table; -* <code>pBitRevTable</code> modifier for bit reversal table which supports all FFT lengths with same table. -* <code>onebyfftLen</code> value of 1/fftLen to calculate CIFFT; -* \par -* The Q15 and Q31 FFT functions use a large bit reversal and twiddle factor -* table. The tables are defined for the maximum length transform and a subset -* of the coefficients are used in shorter transforms. -* -*/ - -void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1) -{ - uint32_t L = S->fftLen; - float32_t * pCol1, * pCol2, * pMid1, * pMid2; - float32_t * p2 = p1 + L; - const float32_t * tw = (float32_t *) S->pTwiddle; - float32_t t1[4], t2[4], t3[4], t4[4], twR, twI; - float32_t m0, m1, m2, m3; - uint32_t l; - - pCol1 = p1; - pCol2 = p2; - - // Define new length - L >>= 1; - // Initialize mid pointers - pMid1 = p1 + L; - pMid2 = p2 + L; - - // do two dot Fourier transform - for ( l = L >> 2; l > 0; l-- ) - { - t1[0] = p1[0]; - t1[1] = p1[1]; - t1[2] = p1[2]; - t1[3] = p1[3]; - - t2[0] = p2[0]; - t2[1] = p2[1]; - t2[2] = p2[2]; - t2[3] = p2[3]; - - t3[0] = pMid1[0]; - t3[1] = pMid1[1]; - t3[2] = pMid1[2]; - t3[3] = pMid1[3]; - - t4[0] = pMid2[0]; - t4[1] = pMid2[1]; - t4[2] = pMid2[2]; - t4[3] = pMid2[3]; - - *p1++ = t1[0] + t2[0]; - *p1++ = t1[1] + t2[1]; - *p1++ = t1[2] + t2[2]; - *p1++ = t1[3] + t2[3]; // col 1 - - t2[0] = t1[0] - t2[0]; - t2[1] = t1[1] - t2[1]; - t2[2] = t1[2] - t2[2]; - t2[3] = t1[3] - t2[3]; // for col 2 - - *pMid1++ = t3[0] + t4[0]; - *pMid1++ = t3[1] + t4[1]; - *pMid1++ = t3[2] + t4[2]; - *pMid1++ = t3[3] + t4[3]; // col 1 - - t4[0] = t4[0] - t3[0]; - t4[1] = t4[1] - t3[1]; - t4[2] = t4[2] - t3[2]; - t4[3] = t4[3] - t3[3]; // for col 2 - - twR = *tw++; - twI = *tw++; - - // multiply by twiddle factors - m0 = t2[0] * twR; - m1 = t2[1] * twI; - m2 = t2[1] * twR; - m3 = t2[0] * twI; - - // R = R * Tr - I * Ti - *p2++ = m0 + m1; - // I = I * Tr + R * Ti - *p2++ = m2 - m3; - - // use vertical symmetry - // 0.9988 - 0.0491i <==> -0.0491 - 0.9988i - m0 = t4[0] * twI; - m1 = t4[1] * twR; - m2 = t4[1] * twI; - m3 = t4[0] * twR; - - *pMid2++ = m0 - m1; - *pMid2++ = m2 + m3; - - twR = *tw++; - twI = *tw++; - - m0 = t2[2] * twR; - m1 = t2[3] * twI; - m2 = t2[3] * twR; - m3 = t2[2] * twI; - - *p2++ = m0 + m1; - *p2++ = m2 - m3; - - m0 = t4[2] * twI; - m1 = t4[3] * twR; - m2 = t4[3] * twI; - m3 = t4[2] * twR; - - *pMid2++ = m0 - m1; - *pMid2++ = m2 + m3; - } - - // first col - arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2u); - // second col - arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2u); - -} - -void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1) -{ - uint32_t L = S->fftLen >> 1; - float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4; - const float32_t *tw2, *tw3, *tw4; - float32_t * p2 = p1 + L; - float32_t * p3 = p2 + L; - float32_t * p4 = p3 + L; - float32_t t2[4], t3[4], t4[4], twR, twI; - float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1; - float32_t m0, m1, m2, m3; - uint32_t l, twMod2, twMod3, twMod4; - - pCol1 = p1; // points to real values by default - pCol2 = p2; - pCol3 = p3; - pCol4 = p4; - pEnd1 = p2 - 1; // points to imaginary values by default - pEnd2 = p3 - 1; - pEnd3 = p4 - 1; - pEnd4 = pEnd3 + L; - - tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle; - - L >>= 1; - - // do four dot Fourier transform - - twMod2 = 2; - twMod3 = 4; - twMod4 = 6; - - // TOP - p1ap3_0 = p1[0] + p3[0]; - p1sp3_0 = p1[0] - p3[0]; - p1ap3_1 = p1[1] + p3[1]; - p1sp3_1 = p1[1] - p3[1]; - - // col 2 - t2[0] = p1sp3_0 + p2[1] - p4[1]; - t2[1] = p1sp3_1 - p2[0] + p4[0]; - // col 3 - t3[0] = p1ap3_0 - p2[0] - p4[0]; - t3[1] = p1ap3_1 - p2[1] - p4[1]; - // col 4 - t4[0] = p1sp3_0 - p2[1] + p4[1]; - t4[1] = p1sp3_1 + p2[0] - p4[0]; - // col 1 - *p1++ = p1ap3_0 + p2[0] + p4[0]; - *p1++ = p1ap3_1 + p2[1] + p4[1]; - - // Twiddle factors are ones - *p2++ = t2[0]; - *p2++ = t2[1]; - *p3++ = t3[0]; - *p3++ = t3[1]; - *p4++ = t4[0]; - *p4++ = t4[1]; - - tw2 += twMod2; - tw3 += twMod3; - tw4 += twMod4; - - for (l = (L - 2) >> 1; l > 0; l-- ) - { - - // TOP - p1ap3_0 = p1[0] + p3[0]; - p1sp3_0 = p1[0] - p3[0]; - p1ap3_1 = p1[1] + p3[1]; - p1sp3_1 = p1[1] - p3[1]; - // col 2 - t2[0] = p1sp3_0 + p2[1] - p4[1]; - t2[1] = p1sp3_1 - p2[0] + p4[0]; - // col 3 - t3[0] = p1ap3_0 - p2[0] - p4[0]; - t3[1] = p1ap3_1 - p2[1] - p4[1]; - // col 4 - t4[0] = p1sp3_0 - p2[1] + p4[1]; - t4[1] = p1sp3_1 + p2[0] - p4[0]; - // col 1 - top - *p1++ = p1ap3_0 + p2[0] + p4[0]; - *p1++ = p1ap3_1 + p2[1] + p4[1]; - - // BOTTOM - p1ap3_1 = pEnd1[-1] + pEnd3[-1]; - p1sp3_1 = pEnd1[-1] - pEnd3[-1]; - p1ap3_0 = pEnd1[0] + pEnd3[0]; - p1sp3_0 = pEnd1[0] - pEnd3[0]; - // col 2 - t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1; - t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1]; - // col 3 - t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1]; - t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0]; - // col 4 - t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1; - t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0; - // col 1 - Bottom - *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0]; - *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1]; - - // COL 2 - // read twiddle factors - twR = *tw2++; - twI = *tw2++; - // multiply by twiddle factors - // let Z1 = a + i(b), Z2 = c + i(d) - // => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) - // Top - m0 = t2[0] * twR; - m1 = t2[1] * twI; - m2 = t2[1] * twR; - m3 = t2[0] * twI; - - *p2++ = m0 + m1; - *p2++ = m2 - m3; - // use vertical symmetry col 2 - // 0.9997 - 0.0245i <==> 0.0245 - 0.9997i - // Bottom - m0 = t2[3] * twI; - m1 = t2[2] * twR; - m2 = t2[2] * twI; - m3 = t2[3] * twR; - - *pEnd2-- = m0 - m1; - *pEnd2-- = m2 + m3; - - // COL 3 - twR = tw3[0]; - twI = tw3[1]; - tw3 += twMod3; - // Top - m0 = t3[0] * twR; - m1 = t3[1] * twI; - m2 = t3[1] * twR; - m3 = t3[0] * twI; - - *p3++ = m0 + m1; - *p3++ = m2 - m3; - // use vertical symmetry col 3 - // 0.9988 - 0.0491i <==> -0.9988 - 0.0491i - // Bottom - m0 = -t3[3] * twR; - m1 = t3[2] * twI; - m2 = t3[2] * twR; - m3 = t3[3] * twI; - - *pEnd3-- = m0 - m1; - *pEnd3-- = m3 - m2; - - // COL 4 - twR = tw4[0]; - twI = tw4[1]; - tw4 += twMod4; - // Top - m0 = t4[0] * twR; - m1 = t4[1] * twI; - m2 = t4[1] * twR; - m3 = t4[0] * twI; - - *p4++ = m0 + m1; - *p4++ = m2 - m3; - // use vertical symmetry col 4 - // 0.9973 - 0.0736i <==> -0.0736 + 0.9973i - // Bottom - m0 = t4[3] * twI; - m1 = t4[2] * twR; - m2 = t4[2] * twI; - m3 = t4[3] * twR; - - *pEnd4-- = m0 - m1; - *pEnd4-- = m2 + m3; - } - - //MIDDLE - // Twiddle factors are - // 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i - p1ap3_0 = p1[0] + p3[0]; - p1sp3_0 = p1[0] - p3[0]; - p1ap3_1 = p1[1] + p3[1]; - p1sp3_1 = p1[1] - p3[1]; - - // col 2 - t2[0] = p1sp3_0 + p2[1] - p4[1]; - t2[1] = p1sp3_1 - p2[0] + p4[0]; - // col 3 - t3[0] = p1ap3_0 - p2[0] - p4[0]; - t3[1] = p1ap3_1 - p2[1] - p4[1]; - // col 4 - t4[0] = p1sp3_0 - p2[1] + p4[1]; - t4[1] = p1sp3_1 + p2[0] - p4[0]; - // col 1 - Top - *p1++ = p1ap3_0 + p2[0] + p4[0]; - *p1++ = p1ap3_1 + p2[1] + p4[1]; - - // COL 2 - twR = tw2[0]; - twI = tw2[1]; - - m0 = t2[0] * twR; - m1 = t2[1] * twI; - m2 = t2[1] * twR; - m3 = t2[0] * twI; - - *p2++ = m0 + m1; - *p2++ = m2 - m3; - // COL 3 - twR = tw3[0]; - twI = tw3[1]; - - m0 = t3[0] * twR; - m1 = t3[1] * twI; - m2 = t3[1] * twR; - m3 = t3[0] * twI; - - *p3++ = m0 + m1; - *p3++ = m2 - m3; - // COL 4 - twR = tw4[0]; - twI = tw4[1]; - - m0 = t4[0] * twR; - m1 = t4[1] * twI; - m2 = t4[1] * twR; - m3 = t4[0] * twI; - - *p4++ = m0 + m1; - *p4++ = m2 - m3; - - // first col - arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4u); - // second col - arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4u); - // third col - arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4u); - // fourth col - arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4u); - -} - -/** -* @addtogroup ComplexFFT -* @{ -*/ - -/** -* @details -* @brief Processing function for the floating-point complex FFT. -* @param[in] *S points to an instance of the floating-point CFFT structure. -* @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. -* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. -* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. -* @return none. -*/ - -void arm_cfft_f32( - const arm_cfft_instance_f32 * S, - float32_t * p1, - uint8_t ifftFlag, - uint8_t bitReverseFlag) -{ - - uint32_t L = S->fftLen, l; - float32_t invL, * pSrc; - - if(ifftFlag == 1u) - { - /* Conjugate input data */ - pSrc = p1 + 1; - for(l=0; l<L; l++) { - *pSrc = -*pSrc; - pSrc += 2; - } - } - - switch (L) { - case 16: - case 128: - case 1024: - arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1); - break; - case 32: - case 256: - case 2048: - arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1); - break; - case 64: - case 512: - case 4096: - arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1); - break; - } - - if( bitReverseFlag ) - arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable); - - if(ifftFlag == 1u) - { - invL = 1.0f/(float32_t)L; - /* Conjugate and scale output data */ - pSrc = p1; - for(l=0; l<L; l++) { - *pSrc++ *= invL ; - *pSrc = -(*pSrc) * invL; - pSrc++; - } - } -} -