Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
cmsis_dsp/StatisticsFunctions/arm_var_q31.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_var_q31.c * * Description: Variance of an array of Q31 type. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupStats */ /** * @addtogroup variance * @{ */ /** * @brief Variance of the elements of a Q31 vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult variance value returned here * @return none. * * @details * <b>Scaling and Overflow Behavior:</b> * *\par * The function is implemented using an internal 64-bit accumulator. * The input is represented in 1.31 format, and intermediate multiplication * yields a 2.62 format. * The accumulator maintains full precision of the intermediate multiplication results, * but provides only a single guard bit. * There is no saturation on intermediate additions. * If the accumulator overflows it wraps around and distorts the result. * In order to avoid overflows completely the input signal must be scaled down by * log2(blockSize) bits, as a total of blockSize additions are performed internally. * Finally, the 2.62 accumulator is right shifted by 31 bits to yield a 1.31 format value. * */ void arm_var_q31( q31_t * pSrc, uint32_t blockSize, q63_t * pResult) { q63_t sum = 0, sumSquare = 0; /* Accumulator */ q31_t meanOfSquares, squareOfMean; /* square of mean and mean of square */ q31_t mean; /* mean */ q31_t in; /* input value */ q31_t t; /* Temporary variable */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q63_t sumSquare1 = 0; /* Accumulator */ q31_t in1, in2, in3, in4; /* Temporary input variables */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sum. */ /* read input samples from source buffer */ in1 = pSrc[0]; in2 = pSrc[1]; /* calculate sum of inputs */ sum += in1; /* calculate sum of squares */ sumSquare += ((q63_t) (in1) * (in1)); in3 = pSrc[2]; sum += in2; sumSquare1 += ((q63_t) (in2) * (in2)); in4 = pSrc[3]; sum += in3; sumSquare += ((q63_t) (in3) * (in3)); sum += in4; sumSquare1 += ((q63_t) (in4) * (in4)); /* update input pointer to process next samples */ pSrc += 4u; /* Decrement the loop counter */ blkCnt--; } /* add two accumulators */ sumSquare = sumSquare + sumSquare1; /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; #else /* Run the below code for Cortex-M0 */ blkCnt = blockSize; #endif /* #ifndef ARM_MATH_CM0 */ while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sum. */ in = *pSrc++; sumSquare += ((q63_t) (in) * (in)); sum += in; /* Decrement the loop counter */ blkCnt--; } t = (q31_t) ((1.0f / (float32_t) (blockSize - 1u)) * 1073741824.0f); /* Compute Mean of squares of the input samples * and then store the result in a temporary variable, meanOfSquares. */ sumSquare = (sumSquare >> 31); meanOfSquares = (q31_t) ((sumSquare * t) >> 30); /* Compute mean of all input values */ t = (q31_t) ((1.0f / (blockSize * (blockSize - 1u))) * 2147483648.0f); mean = (q31_t) (sum); /* Compute square of mean */ squareOfMean = (q31_t) (((q63_t) mean * mean) >> 31); squareOfMean = (q31_t) (((q63_t) squareOfMean * t) >> 31); /* Compute variance and then store the result to the destination */ *pResult = (q63_t) meanOfSquares - squareOfMean; } /** * @} end of variance group */