Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
cmsis_dsp/StatisticsFunctions/arm_std_f32.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_std_f32.c * * Description: Standard deviation of the elements of a floating-point vector. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupStats */ /** * @defgroup STD Standard deviation * * Calculates the standard deviation of the elements in the input vector. * The underlying algorithm is used: * * <pre> * Result = sqrt((sumOfSquares - sum<sup>2</sup> / blockSize) / (blockSize - 1)) * * where, sumOfSquares = pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] * pSrc[blockSize-1] * * sum = pSrc[0] + pSrc[1] + pSrc[2] + ... + pSrc[blockSize-1] * </pre> * * There are separate functions for floating point, Q31, and Q15 data types. */ /** * @addtogroup STD * @{ */ /** * @brief Standard deviation of the elements of a floating-point vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult standard deviation value returned here * @return none. * */ void arm_std_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult) { float32_t sum = 0.0f; /* Temporary result storage */ float32_t sumOfSquares = 0.0f; /* Sum of squares */ float32_t in; /* input value */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ float32_t meanOfSquares, mean, squareOfMean; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sum. */ in = *pSrc++; sum += in; sumOfSquares += in * in; in = *pSrc++; sum += in; sumOfSquares += in * in; in = *pSrc++; sum += in; sumOfSquares += in * in; in = *pSrc++; sum += in; sumOfSquares += in * in; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sum. */ in = *pSrc++; sum += in; sumOfSquares += in * in; /* Decrement the loop counter */ blkCnt--; } /* Compute Mean of squares of the input samples * and then store the result in a temporary variable, meanOfSquares. */ meanOfSquares = sumOfSquares / ((float32_t) blockSize - 1.0f); /* Compute mean of all input values */ mean = sum / (float32_t) blockSize; /* Compute square of mean */ squareOfMean = (mean * mean) * (((float32_t) blockSize) / ((float32_t) blockSize - 1.0f)); /* Compute standard deviation and then store the result to the destination */ arm_sqrt_f32((meanOfSquares - squareOfMean), pResult); #else /* Run the below code for Cortex-M0 */ float32_t squareOfSum; /* Square of Sum */ float32_t var; /* Temporary varaince storage */ /* Loop over blockSize number of values */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sumOfSquares. */ in = *pSrc++; sumOfSquares += in * in; /* C = (A[0] + A[1] + ... + A[blockSize-1]) */ /* Compute Sum of the input samples * and then store the result in a temporary variable, sum. */ sum += in; /* Decrement the loop counter */ blkCnt--; } /* Compute the square of sum */ squareOfSum = ((sum * sum) / (float32_t) blockSize); /* Compute the variance */ var = ((sumOfSquares - squareOfSum) / (float32_t) (blockSize - 1.0f)); /* Compute standard deviation and then store the result to the destination */ arm_sqrt_f32(var, pResult); #endif /* #ifndef ARM_MATH_CM0 */ } /** * @} end of STD group */