Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
cmsis_dsp/FastMathFunctions/arm_sin_q31.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_sin_q31.c * * Description: Fast sine calculation for Q31 values. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFastMath */ /** * @addtogroup sin * @{ */ /** * \par * Tables generated are in Q31(1.31 Fixed point format) * Generation of sin values in floating point: * <pre>tableSize = 256; * for(n = -1; n < (tableSize + 1); n++) * { * sinTable[n+1]= sin(2*pi*n/tableSize); * } </pre> * where pi value is 3.14159265358979 * \par * Convert Floating point to Q31(Fixed point): * (sinTable[i] * pow(2, 31)) * \par * rounding to nearest integer is done * sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5); */ static const q31_t sinTableQ31[259] = { 0xfcdbd541, 0x0, 0x3242abf, 0x647d97c, 0x96a9049, 0xc8bd35e, 0xfab272b, 0x12c8106f, 0x15e21445, 0x18f8b83c, 0x1c0b826a, 0x1f19f97b, 0x2223a4c5, 0x25280c5e, 0x2826b928, 0x2b1f34eb, 0x2e110a62, 0x30fbc54d, 0x33def287, 0x36ba2014, 0x398cdd32, 0x3c56ba70, 0x3f1749b8, 0x41ce1e65, 0x447acd50, 0x471cece7, 0x49b41533, 0x4c3fdff4, 0x4ebfe8a5, 0x5133cc94, 0x539b2af0, 0x55f5a4d2, 0x5842dd54, 0x5a82799a, 0x5cb420e0, 0x5ed77c8a, 0x60ec3830, 0x62f201ac, 0x64e88926, 0x66cf8120, 0x68a69e81, 0x6a6d98a4, 0x6c242960, 0x6dca0d14, 0x6f5f02b2, 0x70e2cbc6, 0x72552c85, 0x73b5ebd1, 0x7504d345, 0x7641af3d, 0x776c4edb, 0x78848414, 0x798a23b1, 0x7a7d055b, 0x7b5d039e, 0x7c29fbee, 0x7ce3ceb2, 0x7d8a5f40, 0x7e1d93ea, 0x7e9d55fc, 0x7f0991c4, 0x7f62368f, 0x7fa736b4, 0x7fd8878e, 0x7ff62182, 0x7fffffff, 0x7ff62182, 0x7fd8878e, 0x7fa736b4, 0x7f62368f, 0x7f0991c4, 0x7e9d55fc, 0x7e1d93ea, 0x7d8a5f40, 0x7ce3ceb2, 0x7c29fbee, 0x7b5d039e, 0x7a7d055b, 0x798a23b1, 0x78848414, 0x776c4edb, 0x7641af3d, 0x7504d345, 0x73b5ebd1, 0x72552c85, 0x70e2cbc6, 0x6f5f02b2, 0x6dca0d14, 0x6c242960, 0x6a6d98a4, 0x68a69e81, 0x66cf8120, 0x64e88926, 0x62f201ac, 0x60ec3830, 0x5ed77c8a, 0x5cb420e0, 0x5a82799a, 0x5842dd54, 0x55f5a4d2, 0x539b2af0, 0x5133cc94, 0x4ebfe8a5, 0x4c3fdff4, 0x49b41533, 0x471cece7, 0x447acd50, 0x41ce1e65, 0x3f1749b8, 0x3c56ba70, 0x398cdd32, 0x36ba2014, 0x33def287, 0x30fbc54d, 0x2e110a62, 0x2b1f34eb, 0x2826b928, 0x25280c5e, 0x2223a4c5, 0x1f19f97b, 0x1c0b826a, 0x18f8b83c, 0x15e21445, 0x12c8106f, 0xfab272b, 0xc8bd35e, 0x96a9049, 0x647d97c, 0x3242abf, 0x0, 0xfcdbd541, 0xf9b82684, 0xf6956fb7, 0xf3742ca2, 0xf054d8d5, 0xed37ef91, 0xea1debbb, 0xe70747c4, 0xe3f47d96, 0xe0e60685, 0xdddc5b3b, 0xdad7f3a2, 0xd7d946d8, 0xd4e0cb15, 0xd1eef59e, 0xcf043ab3, 0xcc210d79, 0xc945dfec, 0xc67322ce, 0xc3a94590, 0xc0e8b648, 0xbe31e19b, 0xbb8532b0, 0xb8e31319, 0xb64beacd, 0xb3c0200c, 0xb140175b, 0xaecc336c, 0xac64d510, 0xaa0a5b2e, 0xa7bd22ac, 0xa57d8666, 0xa34bdf20, 0xa1288376, 0x9f13c7d0, 0x9d0dfe54, 0x9b1776da, 0x99307ee0, 0x9759617f, 0x9592675c, 0x93dbd6a0, 0x9235f2ec, 0x90a0fd4e, 0x8f1d343a, 0x8daad37b, 0x8c4a142f, 0x8afb2cbb, 0x89be50c3, 0x8893b125, 0x877b7bec, 0x8675dc4f, 0x8582faa5, 0x84a2fc62, 0x83d60412, 0x831c314e, 0x8275a0c0, 0x81e26c16, 0x8162aa04, 0x80f66e3c, 0x809dc971, 0x8058c94c, 0x80277872, 0x8009de7e, 0x80000000, 0x8009de7e, 0x80277872, 0x8058c94c, 0x809dc971, 0x80f66e3c, 0x8162aa04, 0x81e26c16, 0x8275a0c0, 0x831c314e, 0x83d60412, 0x84a2fc62, 0x8582faa5, 0x8675dc4f, 0x877b7bec, 0x8893b125, 0x89be50c3, 0x8afb2cbb, 0x8c4a142f, 0x8daad37b, 0x8f1d343a, 0x90a0fd4e, 0x9235f2ec, 0x93dbd6a0, 0x9592675c, 0x9759617f, 0x99307ee0, 0x9b1776da, 0x9d0dfe54, 0x9f13c7d0, 0xa1288376, 0xa34bdf20, 0xa57d8666, 0xa7bd22ac, 0xaa0a5b2e, 0xac64d510, 0xaecc336c, 0xb140175b, 0xb3c0200c, 0xb64beacd, 0xb8e31319, 0xbb8532b0, 0xbe31e19b, 0xc0e8b648, 0xc3a94590, 0xc67322ce, 0xc945dfec, 0xcc210d79, 0xcf043ab3, 0xd1eef59e, 0xd4e0cb15, 0xd7d946d8, 0xdad7f3a2, 0xdddc5b3b, 0xe0e60685, 0xe3f47d96, 0xe70747c4, 0xea1debbb, 0xed37ef91, 0xf054d8d5, 0xf3742ca2, 0xf6956fb7, 0xf9b82684, 0xfcdbd541, 0x0, 0x3242abf }; /** * @brief Fast approximation to the trigonometric sine function for Q31 data. * @param[in] x Scaled input value in radians. * @return sin(x). * * The Q31 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi), Here range excludes 2*pi. */ q31_t arm_sin_q31( q31_t x) { q31_t sinVal, in, in2; /* Temporary variables for input, output */ int32_t index; /* Index variables */ q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */ q31_t a, b, c, d; /* Four nearest output values */ q31_t *tablePtr; /* Pointer to table */ q31_t fract, fractCube, fractSquare; /* Temporary values for fractional values */ q31_t oneBy6 = 0x15555555; /* Fixed point value of 1/6 */ q31_t tableSpacing = TABLE_SPACING_Q31; /* Table spacing */ q31_t temp; /* Temporary variable for intermediate process */ in = x; /* Calculate the nearest index */ index = (uint32_t) in / (uint32_t) tableSpacing; /* Calculate the nearest value of input */ in2 = (q31_t) index *tableSpacing; /* Calculation of fractional value */ fract = (in - in2) << 8; /* fractSquare = fract * fract */ fractSquare = ((q31_t) (((q63_t) fract * fract) >> 32)); fractSquare = fractSquare << 1; /* fractCube = fract * fract * fract */ fractCube = ((q31_t) (((q63_t) fractSquare * fract) >> 32)); fractCube = fractCube << 1; /* Checking min and max index of table */ if(index < 0) { index = 0; } else if(index > 256) { index = 256; } /* Initialise table pointer */ tablePtr = (q31_t *) & sinTableQ31[index]; /* Cubic interpolation process */ /* Calculation of wa */ /* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAAAAAA)*fract; */ wa = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32)); temp = 0x2AAAAAAA; wa = (q31_t) ((((q63_t) wa << 32) + ((q63_t) temp * fract)) >> 32); wa = -(wa << 1u); wa += (fractSquare >> 1u); /* Read first nearest value of output from the sin table */ a = *tablePtr++; /* sinVal = a*wa */ sinVal = ((q31_t) (((q63_t) a * wa) >> 32)); /* q31(1.31) Fixed point value of 1 */ temp = 0x7FFFFFFF; /* Calculation of wb */ wb = ((fractCube >> 1u) - (fractSquare + (fract >> 1u))) + temp; /* Read second nearest value of output from the sin table */ b = *tablePtr++; /* sinVal += b*wb */ sinVal = (q31_t) ((((q63_t) sinVal << 32) + (q63_t) b * (wb)) >> 32); /* Calculation of wc */ wc = -fractCube + fractSquare; wc = (wc >> 1u) + fract; /* Read third nearest value of output from the sin table */ c = *tablePtr++; /* sinVal += c*wc */ sinVal = (q31_t) ((((q63_t) sinVal << 32) + ((q63_t) c * wc)) >> 32); /* Calculation of wd */ /* wd = (oneBy6) * fractCube - (oneBy6) * fract; */ fractCube = fractCube - fract; wd = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32)); wd = (wd << 1u); /* Read fourth nearest value of output from the sin table */ d = *tablePtr++; /* sinVal += d*wd; */ sinVal = (q31_t) ((((q63_t) sinVal << 32) + ((q63_t) d * wd)) >> 32); /* convert sinVal in 2.30 format to 1.31 format */ return (__QADD(sinVal, sinVal)); } /** * @} end of sin group */