Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


cmsis_dsp/BasicMathFunctions/arm_scale_q7.c

Committer:
emilmont
Date:
2012-11-28
Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205

File content as of revision 1:fdd22bb7aa52:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision:     V1.1.0  
*    
* Project:         CMSIS DSP Library    
* Title:        arm_scale_q7.c    
*    
* Description:    Multiplies a Q7 vector by a scalar.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Big Endian support added and Merged M0 and M3/M4 Source code.   
*    
* Version 1.0.3 2010/11/29   
*    Re-organized the CMSIS folders and updated documentation.    
*     
* Version 1.0.2 2010/11/11    
*    Documentation updated.     
*    
* Version 1.0.1 2010/10/05     
*    Production release and review comments incorporated.    
*    
* Version 1.0.0 2010/09/20     
*    Production release and review comments incorporated    
*    
* Version 0.0.7  2010/06/10     
*    Misra-C changes done    
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupMath    
 */

/**    
 * @addtogroup scale    
 * @{    
 */

/**    
 * @brief Multiplies a Q7 vector by a scalar.    
 * @param[in]       *pSrc points to the input vector    
 * @param[in]       scaleFract fractional portion of the scale value    
 * @param[in]       shift number of bits to shift the result by    
 * @param[out]      *pDst points to the output vector    
 * @param[in]       blockSize number of samples in the vector    
 * @return none.    
 *    
 * <b>Scaling and Overflow Behavior:</b>    
 * \par    
 * The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.7 format.    
 * These are multiplied to yield a 2.14 intermediate result and this is shifted with saturation to 1.7 format.    
 */

void arm_scale_q7(
  q7_t * pSrc,
  q7_t scaleFract,
  int8_t shift,
  q7_t * pDst,
  uint32_t blockSize)
{
  int8_t kShift = 7 - shift;                     /* shift to apply after scaling */
  uint32_t blkCnt;                               /* loop counter */

#ifndef ARM_MATH_CM0

/* Run the below code for Cortex-M4 and Cortex-M3 */
  q7_t in1, in2, in3, in4, out1, out2, out3, out4;      /* Temporary variables to store input & output */


  /*loop Unrolling */
  blkCnt = blockSize >> 2u;


  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* Reading 4 inputs from memory */
    in1 = *pSrc++;
    in2 = *pSrc++;
    in3 = *pSrc++;
    in4 = *pSrc++;

    /* C = A * scale */
    /* Scale the inputs and then store the results in the temporary variables. */
    out1 = (q7_t) (__SSAT(((in1) * scaleFract) >> kShift, 8));
    out2 = (q7_t) (__SSAT(((in2) * scaleFract) >> kShift, 8));
    out3 = (q7_t) (__SSAT(((in3) * scaleFract) >> kShift, 8));
    out4 = (q7_t) (__SSAT(((in4) * scaleFract) >> kShift, 8));

    /* Packing the individual outputs into 32bit and storing in    
     * destination buffer in single write */
    *__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4u;

  while(blkCnt > 0u)
  {
    /* C = A * scale */
    /* Scale the input and then store the result in the destination buffer. */
    *pDst++ = (q7_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 8));

    /* Decrement the loop counter */
    blkCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  /* Initialize blkCnt with number of samples */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    /* C = A * scale */
    /* Scale the input and then store the result in the destination buffer. */
    *pDst++ = (q7_t) (__SSAT((((q15_t) * pSrc++ * scaleFract) >> kShift), 8));

    /* Decrement the loop counter */
    blkCnt--;
  }

#endif /* #ifndef ARM_MATH_CM0 */

}

/**    
 * @} end of scale group    
 */