Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


cmsis_dsp/TransformFunctions/arm_bitreversal.c

Committer:
emilmont
Date:
2013-05-30
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce

File content as of revision 2:da51fb522205:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision: 	V1.1.0  
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_bitreversal.c    
*    
* Description:	This file has common tables like Bitreverse, reciprocal etc which are used across different functions    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Initial Version  
* -------------------------------------------------------------------- */

#include "arm_math.h"
#include "arm_common_tables.h"

/*    
 * @brief  In-place bit reversal function.   
 * @param[in, out] *pSrc        points to the in-place buffer of floating-point data type.   
 * @param[in]      fftSize      length of the FFT.   
 * @param[in]      bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table.   
 * @param[in]      *pBitRevTab  points to the bit reversal table.   
 * @return none.   
 */

void arm_bitreversal_f32(
  float32_t * pSrc,
  uint16_t fftSize,
  uint16_t bitRevFactor,
  uint16_t * pBitRevTab)
{
  uint16_t fftLenBy2, fftLenBy2p1;
  uint16_t i, j;
  float32_t in;

  /*  Initializations */
  j = 0u;
  fftLenBy2 = fftSize >> 1u;
  fftLenBy2p1 = (fftSize >> 1u) + 1u;

  /* Bit Reversal Implementation */
  for (i = 0u; i <= (fftLenBy2 - 2u); i += 2u)
  {
    if(i < j)
    {
      /*  pSrc[i] <-> pSrc[j]; */
      in = pSrc[2u * i];
      pSrc[2u * i] = pSrc[2u * j];
      pSrc[2u * j] = in;

      /*  pSrc[i+1u] <-> pSrc[j+1u] */
      in = pSrc[(2u * i) + 1u];
      pSrc[(2u * i) + 1u] = pSrc[(2u * j) + 1u];
      pSrc[(2u * j) + 1u] = in;

      /*  pSrc[i+fftLenBy2p1] <-> pSrc[j+fftLenBy2p1] */
      in = pSrc[2u * (i + fftLenBy2p1)];
      pSrc[2u * (i + fftLenBy2p1)] = pSrc[2u * (j + fftLenBy2p1)];
      pSrc[2u * (j + fftLenBy2p1)] = in;

      /*  pSrc[i+fftLenBy2p1+1u] <-> pSrc[j+fftLenBy2p1+1u] */
      in = pSrc[(2u * (i + fftLenBy2p1)) + 1u];
      pSrc[(2u * (i + fftLenBy2p1)) + 1u] =
        pSrc[(2u * (j + fftLenBy2p1)) + 1u];
      pSrc[(2u * (j + fftLenBy2p1)) + 1u] = in;

    }

    /*  pSrc[i+1u] <-> pSrc[j+1u] */
    in = pSrc[2u * (i + 1u)];
    pSrc[2u * (i + 1u)] = pSrc[2u * (j + fftLenBy2)];
    pSrc[2u * (j + fftLenBy2)] = in;

    /*  pSrc[i+2u] <-> pSrc[j+2u] */
    in = pSrc[(2u * (i + 1u)) + 1u];
    pSrc[(2u * (i + 1u)) + 1u] = pSrc[(2u * (j + fftLenBy2)) + 1u];
    pSrc[(2u * (j + fftLenBy2)) + 1u] = in;

    /*  Reading the index for the bit reversal */
    j = *pBitRevTab;

    /*  Updating the bit reversal index depending on the fft length  */
    pBitRevTab += bitRevFactor;
  }
}



/*    
 * @brief  In-place bit reversal function.   
 * @param[in, out] *pSrc        points to the in-place buffer of Q31 data type.   
 * @param[in]      fftLen       length of the FFT.   
 * @param[in]      bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table   
 * @param[in]      *pBitRevTab  points to bit reversal table.   
 * @return none.   
 */

void arm_bitreversal_q31(
  q31_t * pSrc,
  uint32_t fftLen,
  uint16_t bitRevFactor,
  uint16_t * pBitRevTable)
{
  uint32_t fftLenBy2, fftLenBy2p1, i, j;
  q31_t in;

  /*  Initializations      */
  j = 0u;
  fftLenBy2 = fftLen / 2u;
  fftLenBy2p1 = (fftLen / 2u) + 1u;

  /* Bit Reversal Implementation */
  for (i = 0u; i <= (fftLenBy2 - 2u); i += 2u)
  {
    if(i < j)
    {
      /*  pSrc[i] <-> pSrc[j]; */
      in = pSrc[2u * i];
      pSrc[2u * i] = pSrc[2u * j];
      pSrc[2u * j] = in;

      /*  pSrc[i+1u] <-> pSrc[j+1u] */
      in = pSrc[(2u * i) + 1u];
      pSrc[(2u * i) + 1u] = pSrc[(2u * j) + 1u];
      pSrc[(2u * j) + 1u] = in;

      /*  pSrc[i+fftLenBy2p1] <-> pSrc[j+fftLenBy2p1] */
      in = pSrc[2u * (i + fftLenBy2p1)];
      pSrc[2u * (i + fftLenBy2p1)] = pSrc[2u * (j + fftLenBy2p1)];
      pSrc[2u * (j + fftLenBy2p1)] = in;

      /*  pSrc[i+fftLenBy2p1+1u] <-> pSrc[j+fftLenBy2p1+1u] */
      in = pSrc[(2u * (i + fftLenBy2p1)) + 1u];
      pSrc[(2u * (i + fftLenBy2p1)) + 1u] =
        pSrc[(2u * (j + fftLenBy2p1)) + 1u];
      pSrc[(2u * (j + fftLenBy2p1)) + 1u] = in;

    }

    /*  pSrc[i+1u] <-> pSrc[j+1u] */
    in = pSrc[2u * (i + 1u)];
    pSrc[2u * (i + 1u)] = pSrc[2u * (j + fftLenBy2)];
    pSrc[2u * (j + fftLenBy2)] = in;

    /*  pSrc[i+2u] <-> pSrc[j+2u] */
    in = pSrc[(2u * (i + 1u)) + 1u];
    pSrc[(2u * (i + 1u)) + 1u] = pSrc[(2u * (j + fftLenBy2)) + 1u];
    pSrc[(2u * (j + fftLenBy2)) + 1u] = in;

    /*  Reading the index for the bit reversal */
    j = *pBitRevTable;

    /*  Updating the bit reversal index depending on the fft length */
    pBitRevTable += bitRevFactor;
  }
}



/*    
   * @brief  In-place bit reversal function.   
   * @param[in, out] *pSrc        points to the in-place buffer of Q15 data type.   
   * @param[in]      fftLen       length of the FFT.   
   * @param[in]      bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table   
   * @param[in]      *pBitRevTab  points to bit reversal table.   
   * @return none.   
 */

void arm_bitreversal_q15(
  q15_t * pSrc16,
  uint32_t fftLen,
  uint16_t bitRevFactor,
  uint16_t * pBitRevTab)
{
  q31_t *pSrc = (q31_t *) pSrc16;
  q31_t in;
  uint32_t fftLenBy2, fftLenBy2p1;
  uint32_t i, j;

  /*  Initializations */
  j = 0u;
  fftLenBy2 = fftLen / 2u;
  fftLenBy2p1 = (fftLen / 2u) + 1u;

  /* Bit Reversal Implementation */
  for (i = 0u; i <= (fftLenBy2 - 2u); i += 2u)
  {
    if(i < j)
    {
      /*  pSrc[i] <-> pSrc[j]; */
      /*  pSrc[i+1u] <-> pSrc[j+1u] */
      in = pSrc[i];
      pSrc[i] = pSrc[j];
      pSrc[j] = in;

      /*  pSrc[i + fftLenBy2p1] <-> pSrc[j + fftLenBy2p1];  */
      /*  pSrc[i + fftLenBy2p1+1u] <-> pSrc[j + fftLenBy2p1+1u] */
      in = pSrc[i + fftLenBy2p1];
      pSrc[i + fftLenBy2p1] = pSrc[j + fftLenBy2p1];
      pSrc[j + fftLenBy2p1] = in;
    }

    /*  pSrc[i+1u] <-> pSrc[j+fftLenBy2];         */
    /*  pSrc[i+2] <-> pSrc[j+fftLenBy2+1u]  */
    in = pSrc[i + 1u];
    pSrc[i + 1u] = pSrc[j + fftLenBy2];
    pSrc[j + fftLenBy2] = in;

    /*  Reading the index for the bit reversal */
    j = *pBitRevTab;

    /*  Updating the bit reversal index depending on the fft length  */
    pBitRevTab += bitRevFactor;
  }
}