Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
cmsis_dsp/StatisticsFunctions/arm_min_q15.c
- Committer:
- emilmont
- Date:
- 2013-05-30
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
File content as of revision 2:da51fb522205:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_min_q15.c * * Description: Minimum value of a Q15 vector. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupStats */ /** * @addtogroup Min * @{ */ /** * @brief Minimum value of a Q15 vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult minimum value returned here * @param[out] *pIndex index of minimum value returned here * @return none. * */ void arm_min_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult, uint32_t * pIndex) { #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q15_t minVal1, minVal2, out; /* Temporary variables to store the output value. */ uint32_t blkCnt, outIndex, count; /* loop counter */ /* Initialise the count value. */ count = 0u; /* Initialise the index value to zero. */ outIndex = 0u; /* Load first input value that act as reference value for comparision */ out = *pSrc++; /* Loop unrolling */ blkCnt = (blockSize - 1u) >> 2u; while(blkCnt > 0) { /* Initialize minVal to the next consecutive values one by one */ minVal1 = *pSrc++; minVal2 = *pSrc++; /* compare for the minimum value */ if(out > minVal1) { /* Update the minimum value and its index */ out = minVal1; outIndex = count + 1u; } minVal1 = *pSrc++; /* compare for the minimum value */ if(out > minVal2) { /* Update the minimum value and its index */ out = minVal2; outIndex = count + 2u; } minVal2 = *pSrc++; /* compare for the minimum value */ if(out > minVal1) { /* Update the minimum value and its index */ out = minVal1; outIndex = count + 3u; } /* compare for the minimum value */ if(out > minVal2) { /* Update the minimum value and its index */ out = minVal2; outIndex = count + 4u; } count += 4u; blkCnt--; } /* if (blockSize - 1u ) is not multiple of 4 */ blkCnt = (blockSize - 1u) % 4u; #else /* Run the below code for Cortex-M0 */ q15_t minVal1, out; /* Temporary variables to store the output value. */ uint32_t blkCnt, outIndex; /* loop counter */ blkCnt = (blockSize - 1u); /* Initialise the index value to zero. */ outIndex = 0u; /* Load first input value that act as reference value for comparision */ out = *pSrc++; #endif // #ifndef ARM_MATH_CM0 while(blkCnt > 0) { /* Initialize minVal to the next consecutive values one by one */ minVal1 = *pSrc++; /* compare for the minimum value */ if(out > minVal1) { /* Update the minimum value and it's index */ out = minVal1; outIndex = blockSize - blkCnt; } blkCnt--; } /* Store the minimum value and its index into destination pointers */ *pResult = out; *pIndex = outIndex; } /** * @} end of Min group */