Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


cmsis_dsp/MatrixFunctions/arm_mat_mult_q31.c

Committer:
emilmont
Date:
2013-05-30
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce

File content as of revision 2:da51fb522205:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision: 	V1.1.0  
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_mat_mult_q31.c    
*    
* Description:	 Q31 matrix multiplication.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Big Endian support added and Merged M0 and M3/M4 Source code.   
*    
* Version 1.0.3 2010/11/29   
*    Re-organized the CMSIS folders and updated documentation.    
*     
* Version 1.0.2 2010/11/11    
*    Documentation updated.     
*    
* Version 1.0.1 2010/10/05     
*    Production release and review comments incorporated.    
*    
* Version 1.0.0 2010/09/20     
*    Production release and review comments incorporated.    
*    
* Version 0.0.5  2010/04/26     
*    incorporated review comments and updated with latest CMSIS layer    
*    
* Version 0.0.3  2010/03/10     
*    Initial version    
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupMatrix    
 */

/**    
 * @addtogroup MatrixMult    
 * @{    
 */

/**    
 * @brief Q31 matrix multiplication    
 * @param[in]       *pSrcA points to the first input matrix structure    
 * @param[in]       *pSrcB points to the second input matrix structure    
 * @param[out]      *pDst points to output matrix structure    
 * @return     		The function returns either    
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
 *    
 * @details    
 * <b>Scaling and Overflow Behavior:</b>    
 *    
 * \par    
 * The function is implemented using an internal 64-bit accumulator.    
 * The accumulator has a 2.62 format and maintains full precision of the intermediate    
 * multiplication results but provides only a single guard bit. There is no saturation    
 * on intermediate additions. Thus, if the accumulator overflows it wraps around and    
 * distorts the result. The input signals should be scaled down to avoid intermediate    
 * overflows. The input is thus scaled down by log2(numColsA) bits    
 * to avoid overflows, as a total of numColsA additions are performed internally.    
 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.    
 *    
 * \par    
 * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.    
 *    
 */

arm_status arm_mat_mult_q31(
  const arm_matrix_instance_q31 * pSrcA,
  const arm_matrix_instance_q31 * pSrcB,
  arm_matrix_instance_q31 * pDst)
{
  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
  q31_t *px;                                     /* Temporary output data matrix pointer */
  q63_t sum;                                     /* Accumulator */
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */

#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
  arm_status status;                             /* status of matrix multiplication */
  q31_t a0, a1, a2, a3, b0, b1, b2, b3;

#ifdef ARM_MATH_MATRIX_CHECK


  /* Check for matrix mismatch condition */
  if((pSrcA->numCols != pSrcB->numRows) ||
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */

  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + i;

      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set    
       ** to the starting address of the pSrcB data */
      pIn2 = pSrcB->pData;

      j = 0u;

      /* column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum = 0;

        /* Initiate the pointer pIn1 to point to the starting address of pInA */
        pIn1 = pInA;

        /* Apply loop unrolling and compute 4 MACs simultaneously. */
        colCnt = numColsA >> 2;


        /* matrix multiplication */
        while(colCnt > 0u)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
          /* Perform the multiply-accumulates */
          b0 = *pIn2;
          pIn2 += numColsB;

          a0 = *pIn1++;
          a1 = *pIn1++;

          b1 = *pIn2;
          pIn2 += numColsB;
          b2 = *pIn2;
          pIn2 += numColsB;

          sum += (q63_t) a0 *b0;
          sum += (q63_t) a1 *b1;

          a2 = *pIn1++;
          a3 = *pIn1++;

          b3 = *pIn2;
          pIn2 += numColsB;

          sum += (q63_t) a2 *b2;
          sum += (q63_t) a3 *b3;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.    
         ** No loop unrolling is used. */
        colCnt = numColsA % 0x4u;

        while(colCnt > 0u)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
          /* Perform the multiply-accumulates */
          sum += (q63_t) * pIn1++ * *pIn2;
          pIn2 += numColsB;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
        *px++ = (q31_t) (sum >> 31);

        /* Update the pointer pIn2 to point to the  starting address of the next column */
        j++;
        pIn2 = (pSrcB->pData) + j;

        /* Decrement the column loop counter */
        col--;

      } while(col > 0u);

#else

  /* Run the below code for Cortex-M0 */

  q31_t *pInB = pSrcB->pData;                    /* input data matrix pointer B */
  uint16_t col, i = 0u, row = numRowsA, colCnt;  /* loop counters */
  arm_status status;                             /* status of matrix multiplication */


#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if((pSrcA->numCols != pSrcB->numRows) ||
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */

  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + i;

      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set          
       ** to the starting address of the pSrcB data */
      pIn2 = pSrcB->pData;

      /* column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum = 0;

        /* Initiate the pointer pIn1 to point to the starting address of pInA */
        pIn1 = pInA;

        /* Matrix A columns number of MAC operations are to be performed */
        colCnt = numColsA;

        /* matrix multiplication */
        while(colCnt > 0u)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
          /* Perform the multiply-accumulates */
          sum += (q63_t) * pIn1++ * *pIn2;
          pIn2 += numColsB;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
        *px++ = (q31_t) (sum >> 31);

        /* Decrement the column loop counter */
        col--;

        /* Update the pointer pIn2 to point to the  starting address of the next column */
        pIn2 = pInB + (numColsB - col);

      } while(col > 0u);

#endif

      /* Update the pointer pInA to point to the  starting address of the next row */
      i = i + numColsB;
      pInA = pInA + numColsA;

      /* Decrement the row loop counter */
      row--;

    } while(row > 0u);

    /* set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }
  /* Return to application */
  return (status);
}

/**    
 * @} end of MatrixMult group    
 */