Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


cmsis_dsp/BasicMathFunctions/arm_mult_q15.c

Committer:
emilmont
Date:
2013-05-30
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce

File content as of revision 2:da51fb522205:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision: 	V1.1.0  
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_mult_q15.c    
*    
* Description:	Q15 vector multiplication.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Big Endian support added and Merged M0 and M3/M4 Source code.   
*    
* Version 1.0.3 2010/11/29   
*    Re-organized the CMSIS folders and updated documentation.    
*     
* Version 1.0.2 2010/11/11    
*    Documentation updated.     
*    
* Version 1.0.1 2010/10/05     
*    Production release and review comments incorporated.    
*    
* Version 1.0.0 2010/09/20     
*    Production release and review comments incorporated.    
*    
* Version 0.0.5  2010/04/26     
*    incorporated review comments and updated with latest CMSIS layer    
*    
* Version 0.0.3  2010/03/10     
*    Initial version    
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupMath    
 */

/**    
 * @addtogroup BasicMult    
 * @{    
 */


/**    
 * @brief           Q15 vector multiplication    
 * @param[in]       *pSrcA points to the first input vector    
 * @param[in]       *pSrcB points to the second input vector    
 * @param[out]      *pDst points to the output vector    
 * @param[in]       blockSize number of samples in each vector    
 * @return none.    
 *    
 * <b>Scaling and Overflow Behavior:</b>    
 * \par    
 * The function uses saturating arithmetic.    
 * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.    
 */

void arm_mult_q15(
  q15_t * pSrcA,
  q15_t * pSrcB,
  q15_t * pDst,
  uint32_t blockSize)
{
  uint32_t blkCnt;                               /* loop counters */

#ifndef ARM_MATH_CM0

/* Run the below code for Cortex-M4 and Cortex-M3 */
  q31_t inA1, inA2, inB1, inB2;                  /* temporary input variables */
  q15_t out1, out2, out3, out4;                  /* temporary output variables */
  q31_t mul1, mul2, mul3, mul4;                  /* temporary variables */

  /* loop Unrolling */
  blkCnt = blockSize >> 2u;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.        
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* read two samples at a time from sourceA */
    inA1 = *__SIMD32(pSrcA)++;
    /* read two samples at a time from sourceB */
    inB1 = *__SIMD32(pSrcB)++;
    /* read two samples at a time from sourceA */
    inA2 = *__SIMD32(pSrcA)++;
    /* read two samples at a time from sourceB */
    inB2 = *__SIMD32(pSrcB)++;

    /* multiply mul = sourceA * sourceB */
    mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
    mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
    mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
    mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);

    /* saturate result to 16 bit */
    out1 = (q15_t) __SSAT(mul1 >> 15, 16);
    out2 = (q15_t) __SSAT(mul2 >> 15, 16);
    out3 = (q15_t) __SSAT(mul3 >> 15, 16);
    out4 = (q15_t) __SSAT(mul4 >> 15, 16);

    /* store the result */
#ifndef ARM_MATH_BIG_ENDIAN

    *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
    *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);

#else

    *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
    *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);

#endif //      #ifndef ARM_MATH_BIG_ENDIAN

    /* Decrement the blockSize loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4u;

#else

  /* Run the below code for Cortex-M0 */

  /* Initialize blkCnt with number of samples */
  blkCnt = blockSize;

#endif /* #ifndef ARM_MATH_CM0 */


  while(blkCnt > 0u)
  {
    /* C = A * B */
    /* Multiply the inputs and store the result in the destination buffer */
    *pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);

    /* Decrement the blockSize loop counter */
    blkCnt--;
  }
}

/**    
 * @} end of BasicMult group    
 */