Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
cmsis_dsp/ComplexMathFunctions/arm_cmplx_mag_f32.c
- Committer:
- mbed_official
- Date:
- 2014-06-23
- Revision:
- 4:9cee975aadce
- Parent:
- 3:7a284390b0ce
File content as of revision 4:9cee975aadce:
/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_cmplx_mag_f32.c * * Description: Floating-point complex magnitude. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @defgroup cmplx_mag Complex Magnitude * * Computes the magnitude of the elements of a complex data vector. * * The <code>pSrc</code> points to the source data and * <code>pDst</code> points to the where the result should be written. * <code>numSamples</code> specifies the number of complex samples * in the input array and the data is stored in an interleaved fashion * (real, imag, real, imag, ...). * The input array has a total of <code>2*numSamples</code> values; * the output array has a total of <code>numSamples</code> values. * The underlying algorithm is used: * * <pre> * for(n=0; n<numSamples; n++) { * pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2); * } * </pre> * * There are separate functions for floating-point, Q15, and Q31 data types. */ /** * @addtogroup cmplx_mag * @{ */ /** * @brief Floating-point complex magnitude. * @param[in] *pSrc points to complex input buffer * @param[out] *pDst points to real output buffer * @param[in] numSamples number of complex samples in the input vector * @return none. * */ void arm_cmplx_mag_f32( float32_t * pSrc, float32_t * pDst, uint32_t numSamples) { float32_t realIn, imagIn; /* Temporary variables to hold input values */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ uint32_t blkCnt; /* loop counter */ /*loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ realIn = *pSrc++; imagIn = *pSrc++; /* store the result in the destination buffer. */ arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); realIn = *pSrc++; imagIn = *pSrc++; arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); realIn = *pSrc++; imagIn = *pSrc++; arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); realIn = *pSrc++; imagIn = *pSrc++; arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; while(blkCnt > 0u) { /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ realIn = *pSrc++; imagIn = *pSrc++; /* store the result in the destination buffer. */ arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ while(numSamples > 0u) { /* out = sqrt((real * real) + (imag * imag)) */ realIn = *pSrc++; imagIn = *pSrc++; /* store the result in the destination buffer. */ arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); /* Decrement the loop counter */ numSamples--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ } /** * @} end of cmplx_mag group */