Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
Diff: cmsis_dsp/TransformFunctions/arm_dct4_q15.c
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cmsis_dsp/TransformFunctions/arm_dct4_q15.c Wed Nov 28 12:30:09 2012 +0000 @@ -0,0 +1,386 @@ +/* ---------------------------------------------------------------------- +* Copyright (C) 2010 ARM Limited. All rights reserved. +* +* $Date: 15. February 2012 +* $Revision: V1.1.0 +* +* Project: CMSIS DSP Library +* Title: arm_dct4_q15.c +* +* Description: Processing function of DCT4 & IDCT4 Q15. +* +* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 +* +* Version 1.1.0 2012/02/15 +* Updated with more optimizations, bug fixes and minor API changes. +* +* Version 1.0.10 2011/7/15 +* Big Endian support added and Merged M0 and M3/M4 Source code. +* +* Version 1.0.3 2010/11/29 +* Re-organized the CMSIS folders and updated documentation. +* +* Version 1.0.2 2010/11/11 +* Documentation updated. +* +* Version 1.0.1 2010/10/05 +* Production release and review comments incorporated. +* +* Version 1.0.0 2010/09/20 +* Production release and review comments incorporated. +* -------------------------------------------------------------------- */ + +#include "arm_math.h" + +/** + * @addtogroup DCT4_IDCT4 + * @{ + */ + +/** + * @brief Processing function for the Q15 DCT4/IDCT4. + * @param[in] *S points to an instance of the Q15 DCT4 structure. + * @param[in] *pState points to state buffer. + * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. + * @return none. + * + * \par Input an output formats: + * Internally inputs are downscaled in the RFFT process function to avoid overflows. + * Number of bits downscaled, depends on the size of the transform. + * The input and output formats for different DCT sizes and number of bits to upscale are mentioned in the table below: + * + * \image html dct4FormatsQ15Table.gif + */ + +void arm_dct4_q15( + const arm_dct4_instance_q15 * S, + q15_t * pState, + q15_t * pInlineBuffer) +{ + uint32_t i; /* Loop counter */ + q15_t *weights = S->pTwiddle; /* Pointer to the Weights table */ + q15_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */ + q15_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */ + q15_t in; /* Temporary variable */ + + + /* DCT4 computation involves DCT2 (which is calculated using RFFT) + * along with some pre-processing and post-processing. + * Computational procedure is explained as follows: + * (a) Pre-processing involves multiplying input with cos factor, + * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n)) + * where, + * r(n) -- output of preprocessing + * u(n) -- input to preprocessing(actual Source buffer) + * (b) Calculation of DCT2 using FFT is divided into three steps: + * Step1: Re-ordering of even and odd elements of input. + * Step2: Calculating FFT of the re-ordered input. + * Step3: Taking the real part of the product of FFT output and weights. + * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation: + * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) + * where, + * Y4 -- DCT4 output, Y2 -- DCT2 output + * (d) Multiplying the output with the normalizing factor sqrt(2/N). + */ + + /*-------- Pre-processing ------------*/ + /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */ + arm_mult_q15(pInlineBuffer, cosFact, pInlineBuffer, S->N); + arm_shift_q15(pInlineBuffer, 1, pInlineBuffer, S->N); + + /* ---------------------------------------------------------------- + * Step1: Re-ordering of even and odd elements as + * pState[i] = pInlineBuffer[2*i] and + * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2 + ---------------------------------------------------------------------*/ + + /* pS1 initialized to pState */ + pS1 = pState; + + /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */ + pS2 = pState + (S->N - 1u); + + /* pbuff initialized to input buffer */ + pbuff = pInlineBuffer; + + +#ifndef ARM_MATH_CM0 + + /* Run the below code for Cortex-M4 and Cortex-M3 */ + + /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */ + i = (uint32_t) S->Nby2 >> 2u; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + do + { + /* Re-ordering of even and odd elements */ + /* pState[i] = pInlineBuffer[2*i] */ + *pS1++ = *pbuff++; + /* pState[N-i-1] = pInlineBuffer[2*i+1] */ + *pS2-- = *pbuff++; + + *pS1++ = *pbuff++; + *pS2-- = *pbuff++; + + *pS1++ = *pbuff++; + *pS2-- = *pbuff++; + + *pS1++ = *pbuff++; + *pS2-- = *pbuff++; + + /* Decrement the loop counter */ + i--; + } while(i > 0u); + + /* pbuff initialized to input buffer */ + pbuff = pInlineBuffer; + + /* pS1 initialized to pState */ + pS1 = pState; + + /* Initializing the loop counter to N/4 instead of N for loop unrolling */ + i = (uint32_t) S->N >> 2u; + + /* Processing with loop unrolling 4 times as N is always multiple of 4. + * Compute 4 outputs at a time */ + do + { + /* Writing the re-ordered output back to inplace input buffer */ + *pbuff++ = *pS1++; + *pbuff++ = *pS1++; + *pbuff++ = *pS1++; + *pbuff++ = *pS1++; + + /* Decrement the loop counter */ + i--; + } while(i > 0u); + + + /* --------------------------------------------------------- + * Step2: Calculate RFFT for N-point input + * ---------------------------------------------------------- */ + /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ + arm_rfft_q15(S->pRfft, pInlineBuffer, pState); + + /*---------------------------------------------------------------------- + * Step3: Multiply the FFT output with the weights. + *----------------------------------------------------------------------*/ + arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); + + /* The output of complex multiplication is in 3.13 format. + * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ + arm_shift_q15(pState, 2, pState, S->N * 2); + + /* ----------- Post-processing ---------- */ + /* DCT-IV can be obtained from DCT-II by the equation, + * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) + * Hence, Y4(0) = Y2(0)/2 */ + /* Getting only real part from the output and Converting to DCT-IV */ + + /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */ + i = ((uint32_t) S->N - 1u) >> 2u; + + /* pbuff initialized to input buffer. */ + pbuff = pInlineBuffer; + + /* pS1 initialized to pState */ + pS1 = pState; + + /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ + in = *pS1++ >> 1u; + /* input buffer acts as inplace, so output values are stored in the input itself. */ + *pbuff++ = in; + + /* pState pointer is incremented twice as the real values are located alternatively in the array */ + pS1++; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + do + { + /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ + /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ + in = *pS1++ - in; + *pbuff++ = in; + /* points to the next real value */ + pS1++; + + in = *pS1++ - in; + *pbuff++ = in; + pS1++; + + in = *pS1++ - in; + *pbuff++ = in; + pS1++; + + in = *pS1++ - in; + *pbuff++ = in; + pS1++; + + /* Decrement the loop counter */ + i--; + } while(i > 0u); + + /* If the blockSize is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + i = ((uint32_t) S->N - 1u) % 0x4u; + + while(i > 0u) + { + /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ + /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ + in = *pS1++ - in; + *pbuff++ = in; + /* points to the next real value */ + pS1++; + + /* Decrement the loop counter */ + i--; + } + + + /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ + + /* Initializing the loop counter to N/4 instead of N for loop unrolling */ + i = (uint32_t) S->N >> 2u; + + /* pbuff initialized to the pInlineBuffer(now contains the output values) */ + pbuff = pInlineBuffer; + + /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */ + do + { + /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ + in = *pbuff; + *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); + + in = *pbuff; + *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); + + in = *pbuff; + *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); + + in = *pbuff; + *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); + + /* Decrement the loop counter */ + i--; + } while(i > 0u); + + +#else + + /* Run the below code for Cortex-M0 */ + + /* Initializing the loop counter to N/2 */ + i = (uint32_t) S->Nby2; + + do + { + /* Re-ordering of even and odd elements */ + /* pState[i] = pInlineBuffer[2*i] */ + *pS1++ = *pbuff++; + /* pState[N-i-1] = pInlineBuffer[2*i+1] */ + *pS2-- = *pbuff++; + + /* Decrement the loop counter */ + i--; + } while(i > 0u); + + /* pbuff initialized to input buffer */ + pbuff = pInlineBuffer; + + /* pS1 initialized to pState */ + pS1 = pState; + + /* Initializing the loop counter */ + i = (uint32_t) S->N; + + do + { + /* Writing the re-ordered output back to inplace input buffer */ + *pbuff++ = *pS1++; + + /* Decrement the loop counter */ + i--; + } while(i > 0u); + + + /* --------------------------------------------------------- + * Step2: Calculate RFFT for N-point input + * ---------------------------------------------------------- */ + /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ + arm_rfft_q15(S->pRfft, pInlineBuffer, pState); + + /*---------------------------------------------------------------------- + * Step3: Multiply the FFT output with the weights. + *----------------------------------------------------------------------*/ + arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); + + /* The output of complex multiplication is in 3.13 format. + * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ + arm_shift_q15(pState, 2, pState, S->N * 2); + + /* ----------- Post-processing ---------- */ + /* DCT-IV can be obtained from DCT-II by the equation, + * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) + * Hence, Y4(0) = Y2(0)/2 */ + /* Getting only real part from the output and Converting to DCT-IV */ + + /* Initializing the loop counter */ + i = ((uint32_t) S->N - 1u); + + /* pbuff initialized to input buffer. */ + pbuff = pInlineBuffer; + + /* pS1 initialized to pState */ + pS1 = pState; + + /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ + in = *pS1++ >> 1u; + /* input buffer acts as inplace, so output values are stored in the input itself. */ + *pbuff++ = in; + + /* pState pointer is incremented twice as the real values are located alternatively in the array */ + pS1++; + + do + { + /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ + /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ + in = *pS1++ - in; + *pbuff++ = in; + /* points to the next real value */ + pS1++; + + /* Decrement the loop counter */ + i--; + } while(i > 0u); + + /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ + + /* Initializing the loop counter */ + i = (uint32_t) S->N; + + /* pbuff initialized to the pInlineBuffer(now contains the output values) */ + pbuff = pInlineBuffer; + + do + { + /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ + in = *pbuff; + *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); + + /* Decrement the loop counter */ + i--; + } while(i > 0u); + +#endif /* #ifndef ARM_MATH_CM0 */ + +} + +/** + * @} end of DCT4_IDCT4 group + */