Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/BasicMathFunctions/arm_scale_f32.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,161 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010 ARM Limited. All rights reserved.    
+*    
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*    
+* Project:         CMSIS DSP Library    
+* Title:        arm_scale_f32.c    
+*    
+* Description:    Multiplies a floating-point vector by a scalar.    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+*   
+* Version 1.0.10 2011/7/15  
+*    Big Endian support added and Merged M0 and M3/M4 Source code.   
+*    
+* Version 1.0.3 2010/11/29   
+*    Re-organized the CMSIS folders and updated documentation.    
+*     
+* Version 1.0.2 2010/11/11    
+*    Documentation updated.     
+*    
+* Version 1.0.1 2010/10/05     
+*    Production release and review comments incorporated.    
+*    
+* Version 1.0.0 2010/09/20     
+*    Production release and review comments incorporated    
+*    
+* Version 0.0.7  2010/06/10     
+*    Misra-C changes done    
+* ---------------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**        
+ * @ingroup groupMath        
+ */
+
+/**        
+ * @defgroup scale Vector Scale        
+ *        
+ * Multiply a vector by a scalar value.  For floating-point data, the algorithm used is:        
+ *        
+ * <pre>        
+ *     pDst[n] = pSrc[n] * scale,   0 <= n < blockSize.        
+ * </pre>        
+ *        
+ * In the fixed-point Q7, Q15, and Q31 functions, <code>scale</code> is represented by        
+ * a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.        
+ * The shift allows the gain of the scaling operation to exceed 1.0.        
+ * The algorithm used with fixed-point data is:        
+ *        
+ * <pre>        
+ *     pDst[n] = (pSrc[n] * scaleFract) << shift,   0 <= n < blockSize.        
+ * </pre>        
+ *        
+ * The overall scale factor applied to the fixed-point data is        
+ * <pre>        
+ *     scale = scaleFract * 2^shift.        
+ * </pre>        
+ */
+
+/**        
+ * @addtogroup scale        
+ * @{        
+ */
+
+/**        
+ * @brief Multiplies a floating-point vector by a scalar.        
+ * @param[in]       *pSrc points to the input vector        
+ * @param[in]       scale scale factor to be applied        
+ * @param[out]      *pDst points to the output vector        
+ * @param[in]       blockSize number of samples in the vector        
+ * @return none.        
+ */
+
+
+void arm_scale_f32(
+  float32_t * pSrc,
+  float32_t scale,
+  float32_t * pDst,
+  uint32_t blockSize)
+{
+  uint32_t blkCnt;                               /* loop counter */
+#ifndef ARM_MATH_CM0
+
+/* Run the below code for Cortex-M4 and Cortex-M3 */
+  float32_t in1, in2, in3, in4;                  /* temporary variabels */
+
+  /*loop Unrolling */
+  blkCnt = blockSize >> 2u;
+
+  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.        
+   ** a second loop below computes the remaining 1 to 3 samples. */
+  while(blkCnt > 0u)
+  {
+    /* C = A * scale */
+    /* Scale the input and then store the results in the destination buffer. */
+    /* read input samples from source */
+    in1 = *pSrc;
+    in2 = *(pSrc + 1);
+
+    /* multiply with scaling factor */
+    in1 = in1 * scale;
+
+    /* read input sample from source */
+    in3 = *(pSrc + 2);
+
+    /* multiply with scaling factor */
+    in2 = in2 * scale;
+
+    /* read input sample from source */
+    in4 = *(pSrc + 3);
+
+    /* multiply with scaling factor */
+    in3 = in3 * scale;
+    in4 = in4 * scale;
+    /* store the result to destination */
+    *pDst = in1;
+    *(pDst + 1) = in2;
+    *(pDst + 2) = in3;
+    *(pDst + 3) = in4;
+
+    /* update pointers to process next samples */
+    pSrc += 4u;
+    pDst += 4u;
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+
+  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.        
+   ** No loop unrolling is used. */
+  blkCnt = blockSize % 0x4u;
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  /* Initialize blkCnt with number of samples */
+  blkCnt = blockSize;
+
+#endif /* #ifndef ARM_MATH_CM0 */
+
+  while(blkCnt > 0u)
+  {
+    /* C = A * scale */
+    /* Scale the input and then store the result in the destination buffer. */
+    *pDst++ = (*pSrc++) * scale;
+
+    /* Decrement the loop counter */
+    blkCnt--;
+  }
+}
+
+/**        
+ * @} end of scale group        
+ */