Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Revision:
5:a912b042151f
Parent:
4:9cee975aadce
--- a/cmsis_dsp/TransformFunctions/arm_rfft_q15.c	Mon Jun 23 09:30:09 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,482 +0,0 @@
-/* ----------------------------------------------------------------------    
-* Copyright (C) 2010-2013 ARM Limited. All rights reserved.    
-*    
-* $Date:        17. January 2013  
-* $Revision: 	V1.4.1  
-*    
-* Project: 	    CMSIS DSP Library    
-* Title:	    arm_rfft_q15.c    
-*    
-* Description:	RFFT & RIFFT Q15 process function    
-*    
-*    
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*  
-* Redistribution and use in source and binary forms, with or without 
-* modification, are permitted provided that the following conditions
-* are met:
-*   - Redistributions of source code must retain the above copyright
-*     notice, this list of conditions and the following disclaimer.
-*   - Redistributions in binary form must reproduce the above copyright
-*     notice, this list of conditions and the following disclaimer in
-*     the documentation and/or other materials provided with the 
-*     distribution.
-*   - Neither the name of ARM LIMITED nor the names of its contributors
-*     may be used to endorse or promote products derived from this
-*     software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.     
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-void arm_radix4_butterfly_q15(
-  q15_t * pSrc16,
-  uint32_t fftLen,
-  q15_t * pCoef16,
-  uint32_t twidCoefModifier);
-
-void arm_radix4_butterfly_inverse_q15(
-  q15_t * pSrc16,
-  uint32_t fftLen,
-  q15_t * pCoef16,
-  uint32_t twidCoefModifier);
-
-void arm_bitreversal_q15(
-  q15_t * pSrc,
-  uint32_t fftLen,
-  uint16_t bitRevFactor,
-  uint16_t * pBitRevTab);
-	
-	/*--------------------------------------------------------------------    
-*		Internal functions prototypes    
---------------------------------------------------------------------*/
-
-void arm_split_rfft_q15(
-  q15_t * pSrc,
-  uint32_t fftLen,
-  q15_t * pATable,
-  q15_t * pBTable,
-  q15_t * pDst,
-  uint32_t modifier);
-
-void arm_split_rifft_q15(
-  q15_t * pSrc,
-  uint32_t fftLen,
-  q15_t * pATable,
-  q15_t * pBTable,
-  q15_t * pDst,
-  uint32_t modifier);
-
-/**    
- * @addtogroup RealFFT    
- * @{    
- */
-
-/**    
- * @brief Processing function for the Q15 RFFT/RIFFT.   
- * @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure.   
- * @param[in]  *pSrc points to the input buffer.   
- * @param[out] *pDst points to the output buffer.   
- * @return none.   
- *    
- * \par Input an output formats:   
- * \par    
- * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.    
- * Hence the output format is different for different RFFT sizes.    
- * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:   
- * \par    
- * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"    
- * \par    
- * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"    
- */
-
-void arm_rfft_q15(
-  const arm_rfft_instance_q15 * S,
-  q15_t * pSrc,
-  q15_t * pDst)
-{
-  const arm_cfft_radix4_instance_q15 *S_CFFT = S->pCfft;
-
-  /* Calculation of RIFFT of input */
-  if(S->ifftFlagR == 1u)
-  {
-    /*  Real IFFT core process */
-    arm_split_rifft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal,
-                        S->pTwiddleBReal, pDst, S->twidCoefRModifier);
-
-    /* Complex readix-4 IFFT process */
-    arm_radix4_butterfly_inverse_q15(pDst, S_CFFT->fftLen,
-                                     S_CFFT->pTwiddle,
-                                     S_CFFT->twidCoefModifier);
-
-    /* Bit reversal process */
-    if(S->bitReverseFlagR == 1u)
-    {
-      arm_bitreversal_q15(pDst, S_CFFT->fftLen,
-                          S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
-    }
-  }
-  else
-  {
-    /* Calculation of RFFT of input */
-
-    /* Complex readix-4 FFT process */
-    arm_radix4_butterfly_q15(pSrc, S_CFFT->fftLen,
-                             S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
-
-    /* Bit reversal process */
-    if(S->bitReverseFlagR == 1u)
-    {
-      arm_bitreversal_q15(pSrc, S_CFFT->fftLen,
-                          S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
-    }
-
-    arm_split_rfft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal,
-                       S->pTwiddleBReal, pDst, S->twidCoefRModifier);
-  }
-
-}
-
-  /**    
-   * @} end of RealFFT group    
-   */
-
-/**    
- * @brief  Core Real FFT process    
- * @param  *pSrc 				points to the input buffer.   
- * @param  fftLen  				length of FFT.   
- * @param  *pATable 			points to the A twiddle Coef buffer.    
- * @param  *pBTable 			points to the B twiddle Coef buffer.   
- * @param  *pDst 				points to the output buffer.   
- * @param  modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.   
- * @return none.    
- * The function implements a Real FFT    
- */
-
-void arm_split_rfft_q15(
-  q15_t * pSrc,
-  uint32_t fftLen,
-  q15_t * pATable,
-  q15_t * pBTable,
-  q15_t * pDst,
-  uint32_t modifier)
-{
-  uint32_t i;                                    /* Loop Counter */
-  q31_t outR, outI;                              /* Temporary variables for output */
-  q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
-  q15_t *pSrc1, *pSrc2;
-
-
-//  pSrc[2u * fftLen] = pSrc[0]; 
-//  pSrc[(2u * fftLen) + 1u] = pSrc[1]; 
-
-  pCoefA = &pATable[modifier * 2u];
-  pCoefB = &pBTable[modifier * 2u];
-
-  pSrc1 = &pSrc[2];
-  pSrc2 = &pSrc[(2u * fftLen) - 2u];
-
-#ifndef ARM_MATH_CM0_FAMILY
-
-  /* Run the below code for Cortex-M4 and Cortex-M3 */
-
-  i = 1u;
-
-  while(i < fftLen)
-  {
-    /*    
-       outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]    
-       + pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
-       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
-     */
-
-    /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +    
-       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
-
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
-    /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
-    outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
-
-#else
-
-    /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
-    outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
-
-#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
-
-    /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
-       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
-    outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 15u;
-
-    /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
-    outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
-
-#else
-
-    outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
-
-#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
-
-    /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
-    outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
-
-    /* write output */
-    pDst[2u * i] = (q15_t) outR;
-    pDst[(2u * i) + 1u] = outI >> 15u;
-
-    /* write complex conjugate output */
-    pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
-    pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u);
-
-    /* update coefficient pointer */
-    pCoefB = pCoefB + (2u * modifier);
-    pCoefA = pCoefA + (2u * modifier);
-
-    i++;
-
-  }
-
-  pDst[2u * fftLen] = pSrc[0] - pSrc[1];
-  pDst[(2u * fftLen) + 1u] = 0;
-
-  pDst[0] = pSrc[0] + pSrc[1];
-  pDst[1] = 0;
-
-
-#else
-
-  /* Run the below code for Cortex-M0 */
-
-  i = 1u;
-
-  while(i < fftLen)
-  {
-    /*    
-       outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]    
-       + pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
-       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
-     */
-
-    outR = *pSrc1 * *pCoefA;
-    outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
-    outR = outR + (*pSrc2 * *pCoefB);
-    outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 15;
-
-
-    /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +    
-       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);   
-     */
-
-    outI = *pSrc2 * *(pCoefB + 1);
-    outI = outI - (*(pSrc2 + 1) * *pCoefB);
-    outI = outI + (*(pSrc1 + 1) * *pCoefA);
-    outI = outI + (*pSrc1 * *(pCoefA + 1));
-
-    /* update input pointers */
-    pSrc1 += 2u;
-    pSrc2 -= 2u;
-
-    /* write output */
-    pDst[2u * i] = (q15_t) outR;
-    pDst[(2u * i) + 1u] = outI >> 15u;
-
-    /* write complex conjugate output */
-    pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
-    pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u);
-
-    /* update coefficient pointer */
-    pCoefB = pCoefB + (2u * modifier);
-    pCoefA = pCoefA + (2u * modifier);
-
-    i++;
-
-  }
-
-  pDst[2u * fftLen] = pSrc[0] - pSrc[1];
-  pDst[(2u * fftLen) + 1u] = 0;
-
-  pDst[0] = pSrc[0] + pSrc[1];
-  pDst[1] = 0;
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-}
-
-
-/**    
- * @brief  Core Real IFFT process    
- * @param[in]   *pSrc 				points to the input buffer.    
- * @param[in]   fftLen  		    length of FFT.   
- * @param[in]   *pATable 			points to the twiddle Coef A buffer.   
- * @param[in]   *pBTable 			points to the twiddle Coef B buffer.    
- * @param[out]  *pDst 				points to the output buffer.   
- * @param[in]   modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.   
- * @return none.    
- * The function implements a Real IFFT    
- */
-void arm_split_rifft_q15(
-  q15_t * pSrc,
-  uint32_t fftLen,
-  q15_t * pATable,
-  q15_t * pBTable,
-  q15_t * pDst,
-  uint32_t modifier)
-{
-  uint32_t i;                                    /* Loop Counter */
-  q31_t outR, outI;                              /* Temporary variables for output */
-  q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
-  q15_t *pSrc1, *pSrc2;
-  q15_t *pDst1 = &pDst[0];
-
-  pCoefA = &pATable[0];
-  pCoefB = &pBTable[0];
-
-  pSrc1 = &pSrc[0];
-  pSrc2 = &pSrc[2u * fftLen];
-
-#ifndef ARM_MATH_CM0_FAMILY
-
-  /* Run the below code for Cortex-M4 and Cortex-M3 */
-
-  i = fftLen;
-
-  while(i > 0u)
-  {
-
-    /*    
-       outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
-       pIn[2 * n - 2 * i] * pBTable[2 * i] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
-
-       outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -    
-       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);    
-
-     */
-
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
-    /* pIn[2 * n - 2 * i] * pBTable[2 * i] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
-    outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
-
-#else
-
-    /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +  
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
-    outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
-
-#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
-
-    /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
-       pIn[2 * n - 2 * i] * pBTable[2 * i] */
-    outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 15u;
-
-    /*    
-       -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
-    outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
-
-    /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
-    outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
-
-#else
-
-    outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
-
-#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
-    /* write output */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
-    *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 15u), 16);
-
-#else
-
-    *__SIMD32(pDst1)++ = __PKHBT((outI >> 15u), outR, 16);
-
-#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
-
-    /* update coefficient pointer */
-    pCoefB = pCoefB + (2u * modifier);
-    pCoefA = pCoefA + (2u * modifier);
-
-    i--;
-
-  }
-
-
-#else
-
-  /* Run the below code for Cortex-M0 */
-
-  i = fftLen;
-
-  while(i > 0u)
-  {
-
-    /*    
-       outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
-       pIn[2 * n - 2 * i] * pBTable[2 * i] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
-     */
-
-    outR = *pSrc2 * *pCoefB;
-    outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
-    outR = outR + (*pSrc1 * *pCoefA);
-    outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 15;
-
-    /*   
-       outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -   
-       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -   
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);   
-     */
-
-    outI = *(pSrc1 + 1) * *pCoefA;
-    outI = outI - (*pSrc1 * *(pCoefA + 1));
-    outI = outI - (*pSrc2 * *(pCoefB + 1));
-    outI = outI - (*(pSrc2 + 1) * *(pCoefB));
-
-    /* update input pointers */
-    pSrc1 += 2u;
-    pSrc2 -= 2u;
-
-    /* write output */
-    *pDst1++ = (q15_t) outR;
-    *pDst1++ = (q15_t) (outI >> 15);
-
-    /* update coefficient pointer */
-    pCoefB = pCoefB + (2u * modifier);
-    pCoefA = pCoefA + (2u * modifier);
-
-    i--;
-
-  }
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-}