Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Revision:
5:a912b042151f
Parent:
4:9cee975aadce
--- a/cmsis_dsp/TransformFunctions/arm_rfft_f32.c	Mon Jun 23 09:30:09 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,329 +0,0 @@
-/* ----------------------------------------------------------------------    
-* Copyright (C) 2010-2013 ARM Limited. All rights reserved.    
-*    
-* $Date:        17. January 2013  
-* $Revision: 	V1.4.1  
-*    
-* Project: 	    CMSIS DSP Library    
-* Title:	    arm_rfft_f32.c    
-*    
-* Description:	RFFT & RIFFT Floating point process function    
-*    
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*  
-* Redistribution and use in source and binary forms, with or without 
-* modification, are permitted provided that the following conditions
-* are met:
-*   - Redistributions of source code must retain the above copyright
-*     notice, this list of conditions and the following disclaimer.
-*   - Redistributions in binary form must reproduce the above copyright
-*     notice, this list of conditions and the following disclaimer in
-*     the documentation and/or other materials provided with the 
-*     distribution.
-*   - Neither the name of ARM LIMITED nor the names of its contributors
-*     may be used to endorse or promote products derived from this
-*     software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.  
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-extern void arm_radix4_butterfly_f32(
-    float32_t * pSrc,
-    uint16_t fftLen,
-    float32_t * pCoef,
-    uint16_t twidCoefModifier);
-
-extern void arm_radix4_butterfly_inverse_f32(
-    float32_t * pSrc,
-    uint16_t fftLen,
-    float32_t * pCoef,
-    uint16_t twidCoefModifier,
-    float32_t onebyfftLen);
-
-extern void arm_bitreversal_f32(
-    float32_t * pSrc,
-    uint16_t fftSize,
-    uint16_t bitRevFactor,
-    uint16_t * pBitRevTab);
-
-/**    
- * @ingroup groupTransforms    
- */
-
-/*--------------------------------------------------------------------    
- *		Internal functions prototypes    
- *--------------------------------------------------------------------*/
-
-void arm_split_rfft_f32(
-  float32_t * pSrc,
-  uint32_t fftLen,
-  float32_t * pATable,
-  float32_t * pBTable,
-  float32_t * pDst,
-  uint32_t modifier);
-void arm_split_rifft_f32(
-  float32_t * pSrc,
-  uint32_t fftLen,
-  float32_t * pATable,
-  float32_t * pBTable,
-  float32_t * pDst,
-  uint32_t modifier);
-
-/**    
- * @addtogroup RealFFT    
- * @{    
- */
-
-/**    
- * @brief Processing function for the floating-point RFFT/RIFFT.   
- * @deprecated Do not use this function.  It has been superceded by \ref arm_rfft_fast_f32 and will be removed
- * in the future.
- * @param[in]  *S    points to an instance of the floating-point RFFT/RIFFT structure.   
- * @param[in]  *pSrc points to the input buffer.   
- * @param[out] *pDst points to the output buffer.   
- * @return none.   
- */
-
-void arm_rfft_f32(
-  const arm_rfft_instance_f32 * S,
-  float32_t * pSrc,
-  float32_t * pDst)
-{
-  const arm_cfft_radix4_instance_f32 *S_CFFT = S->pCfft;
-
-
-  /* Calculation of Real IFFT of input */
-  if(S->ifftFlagR == 1u)
-  {
-    /*  Real IFFT core process */
-    arm_split_rifft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
-                        S->pTwiddleBReal, pDst, S->twidCoefRModifier);
-
-
-    /* Complex radix-4 IFFT process */
-    arm_radix4_butterfly_inverse_f32(pDst, S_CFFT->fftLen,
-                                     S_CFFT->pTwiddle,
-                                     S_CFFT->twidCoefModifier,
-                                     S_CFFT->onebyfftLen);
-
-    /* Bit reversal process */
-    if(S->bitReverseFlagR == 1u)
-    {
-      arm_bitreversal_f32(pDst, S_CFFT->fftLen,
-                          S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
-    }
-  }
-  else
-  {
-
-    /* Calculation of RFFT of input */
-
-    /* Complex radix-4 FFT process */
-    arm_radix4_butterfly_f32(pSrc, S_CFFT->fftLen,
-                             S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
-
-    /* Bit reversal process */
-    if(S->bitReverseFlagR == 1u)
-    {
-      arm_bitreversal_f32(pSrc, S_CFFT->fftLen,
-                          S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
-    }
-
-
-    /*  Real FFT core process */
-    arm_split_rfft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
-                       S->pTwiddleBReal, pDst, S->twidCoefRModifier);
-  }
-
-}
-
-/**    
-   * @} end of RealFFT group    
-   */
-
-/**    
- * @brief  Core Real FFT process    
- * @param[in]   *pSrc 				points to the input buffer.    
- * @param[in]   fftLen  			length of FFT.    
- * @param[in]   *pATable 			points to the twiddle Coef A buffer.    
- * @param[in]   *pBTable 			points to the twiddle Coef B buffer.    
- * @param[out]  *pDst 				points to the output buffer.    
- * @param[in]   modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.   
- * @return none.    
- */
-
-void arm_split_rfft_f32(
-  float32_t * pSrc,
-  uint32_t fftLen,
-  float32_t * pATable,
-  float32_t * pBTable,
-  float32_t * pDst,
-  uint32_t modifier)
-{
-  uint32_t i;                                    /* Loop Counter */
-  float32_t outR, outI;                          /* Temporary variables for output */
-  float32_t *pCoefA, *pCoefB;                    /* Temporary pointers for twiddle factors */
-  float32_t CoefA1, CoefA2, CoefB1;              /* Temporary variables for twiddle coefficients */
-  float32_t *pDst1 = &pDst[2], *pDst2 = &pDst[(4u * fftLen) - 1u];      /* temp pointers for output buffer */
-  float32_t *pSrc1 = &pSrc[2], *pSrc2 = &pSrc[(2u * fftLen) - 1u];      /* temp pointers for input buffer */
-
-  /* Init coefficient pointers */
-  pCoefA = &pATable[modifier * 2u];
-  pCoefB = &pBTable[modifier * 2u];
-
-  i = fftLen - 1u;
-
-  while(i > 0u)
-  {
-    /*    
-       outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]    
-       + pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
-       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
-     */
-
-    /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +    
-       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
-
-    /* read pATable[2 * i] */
-    CoefA1 = *pCoefA++;
-    /* pATable[2 * i + 1] */
-    CoefA2 = *pCoefA;
-
-    /* pSrc[2 * i] * pATable[2 * i] */
-    outR = *pSrc1 * CoefA1;
-    /* pSrc[2 * i] * CoefA2 */
-    outI = *pSrc1++ * CoefA2;
-
-    /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
-    outR -= (*pSrc1 + *pSrc2) * CoefA2;
-    /* pSrc[2 * i + 1] * CoefA1 */
-    outI += *pSrc1++ * CoefA1;
-
-    CoefB1 = *pCoefB;
-
-    /* pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
-    outI -= *pSrc2-- * CoefB1;
-    /* pSrc[2 * fftLen - 2 * i] * CoefA2 */
-    outI -= *pSrc2 * CoefA2;
-
-    /* pSrc[2 * fftLen - 2 * i] * CoefB1 */
-    outR += *pSrc2-- * CoefB1;
-
-    /* write output */
-    *pDst1++ = outR;
-    *pDst1++ = outI;
-
-    /* write complex conjugate output */
-    *pDst2-- = -outI;
-    *pDst2-- = outR;
-
-    /* update coefficient pointer */
-    pCoefB = pCoefB + (modifier * 2u);
-    pCoefA = pCoefA + ((modifier * 2u) - 1u);
-
-    i--;
-
-  }
-
-  pDst[2u * fftLen] = pSrc[0] - pSrc[1];
-  pDst[(2u * fftLen) + 1u] = 0.0f;
-
-  pDst[0] = pSrc[0] + pSrc[1];
-  pDst[1] = 0.0f;
-
-}
-
-
-/**    
- * @brief  Core Real IFFT process    
- * @param[in]   *pSrc 				points to the input buffer.    
- * @param[in]   fftLen  			length of FFT.   
- * @param[in]   *pATable 			points to the twiddle Coef A buffer.   
- * @param[in]   *pBTable 			points to the twiddle Coef B buffer.   
- * @param[out]  *pDst 				points to the output buffer.   
- * @param[in]   modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.    
- * @return none.    
- */
-
-void arm_split_rifft_f32(
-  float32_t * pSrc,
-  uint32_t fftLen,
-  float32_t * pATable,
-  float32_t * pBTable,
-  float32_t * pDst,
-  uint32_t modifier)
-{
-  float32_t outR, outI;                          /* Temporary variables for output */
-  float32_t *pCoefA, *pCoefB;                    /* Temporary pointers for twiddle factors */
-  float32_t CoefA1, CoefA2, CoefB1;              /* Temporary variables for twiddle coefficients */
-  float32_t *pSrc1 = &pSrc[0], *pSrc2 = &pSrc[(2u * fftLen) + 1u];
-
-  pCoefA = &pATable[0];
-  pCoefB = &pBTable[0];
-
-  while(fftLen > 0u)
-  {
-    /*    
-       outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
-       pIn[2 * n - 2 * i] * pBTable[2 * i] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
-
-       outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -    
-       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
-       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);    
-
-     */
-
-    CoefA1 = *pCoefA++;
-    CoefA2 = *pCoefA;
-
-    /* outR = (pSrc[2 * i] * CoefA1 */
-    outR = *pSrc1 * CoefA1;
-
-    /* - pSrc[2 * i] * CoefA2 */
-    outI = -(*pSrc1++) * CoefA2;
-
-    /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
-    outR += (*pSrc1 + *pSrc2) * CoefA2;
-
-    /* pSrc[2 * i + 1] * CoefA1 */
-    outI += (*pSrc1++) * CoefA1;
-
-    CoefB1 = *pCoefB;
-
-    /* - pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
-    outI -= *pSrc2-- * CoefB1;
-
-    /* pSrc[2 * fftLen - 2 * i] * CoefB1 */
-    outR += *pSrc2 * CoefB1;
-
-    /* pSrc[2 * fftLen - 2 * i] * CoefA2 */
-    outI += *pSrc2-- * CoefA2;
-
-    /* write output */
-    *pDst++ = outR;
-    *pDst++ = outI;
-
-    /* update coefficient pointer */
-    pCoefB = pCoefB + (modifier * 2u);
-    pCoefA = pCoefA + ((modifier * 2u) - 1u);
-
-    /* Decrement loop count */
-    fftLen--;
-  }
-
-}