Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Revision:
5:a912b042151f
Parent:
4:9cee975aadce
--- a/cmsis_dsp/MatrixFunctions/arm_mat_mult_q15.c	Mon Jun 23 09:30:09 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,469 +0,0 @@
-/* ----------------------------------------------------------------------    
-* Copyright (C) 2010-2013 ARM Limited. All rights reserved.    
-*    
-* $Date:        17. January 2013 
-* $Revision: 	V1.4.1
-*    
-* Project: 	    CMSIS DSP Library    
-* Title:	    arm_mat_mult_q15.c    
-*    
-* Description:	 Q15 matrix multiplication.    
-*    
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*  
-* Redistribution and use in source and binary forms, with or without 
-* modification, are permitted provided that the following conditions
-* are met:
-*   - Redistributions of source code must retain the above copyright
-*     notice, this list of conditions and the following disclaimer.
-*   - Redistributions in binary form must reproduce the above copyright
-*     notice, this list of conditions and the following disclaimer in
-*     the documentation and/or other materials provided with the 
-*     distribution.
-*   - Neither the name of ARM LIMITED nor the names of its contributors
-*     may be used to endorse or promote products derived from this
-*     software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.     
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**    
- * @ingroup groupMatrix    
- */
-
-/**    
- * @addtogroup MatrixMult    
- * @{    
- */
-
-
-/**    
- * @brief Q15 matrix multiplication    
- * @param[in]       *pSrcA points to the first input matrix structure    
- * @param[in]       *pSrcB points to the second input matrix structure    
- * @param[out]      *pDst points to output matrix structure    
- * @param[in]		*pState points to the array for storing intermediate results   
- * @return     		The function returns either    
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
- *    
- * @details    
- * <b>Scaling and Overflow Behavior:</b>    
- *    
- * \par    
- * The function is implemented using a 64-bit internal accumulator. The inputs to the    
- * multiplications are in 1.15 format and multiplications yield a 2.30 result.    
- * The 2.30 intermediate    
- * results are accumulated in a 64-bit accumulator in 34.30 format. This approach    
- * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then    
- * truncated to 34.15 format by discarding the low 15 bits and then saturated to    
- * 1.15 format.    
- *    
- * \par    
- * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.    
- *    
- */
-
-arm_status arm_mat_mult_q15(
-  const arm_matrix_instance_q15 * pSrcA,
-  const arm_matrix_instance_q15 * pSrcB,
-  arm_matrix_instance_q15 * pDst,
-  q15_t * pState CMSIS_UNUSED)
-{
-  q63_t sum;                                     /* accumulator */
-
-#ifndef ARM_MATH_CM0_FAMILY
-
-  /* Run the below code for Cortex-M4 and Cortex-M3 */
-
-  q15_t *pSrcBT = pState;                        /* input data matrix pointer for transpose */
-  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
-  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
-  q15_t *px;                                     /* Temporary output data matrix pointer */
-  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
-  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
-  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
-  uint16_t numRowsB = pSrcB->numRows;            /* number of rows of input matrix A    */
-  uint16_t col, i = 0u, row = numRowsB, colCnt;  /* loop counters */
-  arm_status status;                             /* status of matrix multiplication */
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
-  q31_t in;                                      /* Temporary variable to hold the input value */
-  q31_t pSourceA1, pSourceB1, pSourceA2, pSourceB2;
-
-#else
-
-  q15_t in;                                      /* Temporary variable to hold the input value */
-  q15_t inA1, inB1, inA2, inB2;
-
-#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
-
-#ifdef ARM_MATH_MATRIX_CHECK
-  /* Check for matrix mismatch condition */
-  if((pSrcA->numCols != pSrcB->numRows) ||
-     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
-  {
-    /* Set status as ARM_MATH_SIZE_MISMATCH */
-    status = ARM_MATH_SIZE_MISMATCH;
-  }
-  else
-#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
-  {
-    /* Matrix transpose */
-    do
-    {
-      /* Apply loop unrolling and exchange the columns with row elements */
-      col = numColsB >> 2;
-
-      /* The pointer px is set to starting address of the column being processed */
-      px = pSrcBT + i;
-
-      /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.        
-       ** a second loop below computes the remaining 1 to 3 samples. */
-      while(col > 0u)
-      {
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
-        /* Read two elements from the row */
-        in = *__SIMD32(pInB)++;
-
-        /* Unpack and store one element in the destination */
-#ifndef ARM_MATH_BIG_ENDIAN
-
-        *px = (q15_t) in;
-
-#else
-
-        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
-
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-        /* Unpack and store the second element in the destination */
-#ifndef ARM_MATH_BIG_ENDIAN
-
-        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#else
-
-        *px = (q15_t) in;
-
-#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
-
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-        /* Read two elements from the row */
-        in = *__SIMD32(pInB)++;
-
-        /* Unpack and store one element in the destination */
-#ifndef ARM_MATH_BIG_ENDIAN
-
-        *px = (q15_t) in;
-
-#else
-
-        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
-
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-        /* Unpack and store the second element in the destination */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
-        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#else
-
-        *px = (q15_t) in;
-
-#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
-
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-#else
-
-        /* Read one element from the row */
-        in = *pInB++;
-
-        /* Store one element in the destination */
-        *px = in;
- 
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-        /* Read one element from the row */
-        in = *pInB++;
-
-        /* Store one element in the destination */
-        *px = in;
- 
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-        /* Read one element from the row */
-        in = *pInB++;
-
-        /* Store one element in the destination */
-        *px = in;
- 
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-        /* Read one element from the row */
-        in = *pInB++;
-
-        /* Store one element in the destination */
-        *px = in;
- 
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
-
-       /* Decrement the column loop counter */
-        col--;
-      }
-
-      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.        
-       ** No loop unrolling is used. */
-      col = numColsB % 0x4u;
-
-      while(col > 0u)
-      {
-        /* Read and store the input element in the destination */
-        *px = *pInB++;
-
-        /* Update the pointer px to point to the next row of the transposed matrix */
-        px += numRowsB;
-
-        /* Decrement the column loop counter */
-        col--;
-      }
-
-      i++;
-
-      /* Decrement the row loop counter */
-      row--;
-
-    } while(row > 0u);
-
-    /* Reset the variables for the usage in the following multiplication process */
-    row = numRowsA;
-    i = 0u;
-    px = pDst->pData;
-
-    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
-    /* row loop */
-    do
-    {
-      /* For every row wise process, the column loop counter is to be initiated */
-      col = numColsB;
-
-      /* For every row wise process, the pIn2 pointer is set        
-       ** to the starting address of the transposed pSrcB data */
-      pInB = pSrcBT;
-
-      /* column loop */
-      do
-      {
-        /* Set the variable sum, that acts as accumulator, to zero */
-        sum = 0;
-
-        /* Apply loop unrolling and compute 2 MACs simultaneously. */
-        colCnt = numColsA >> 2;
-
-        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
-        pInA = pSrcA->pData + i;
-
-
-        /* matrix multiplication */
-        while(colCnt > 0u)
-        {
-          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
-          /* read real and imag values from pSrcA and pSrcB buffer */
-          pSourceA1 = *__SIMD32(pInA)++;
-          pSourceB1 = *__SIMD32(pInB)++;
-
-          pSourceA2 = *__SIMD32(pInA)++;
-          pSourceB2 = *__SIMD32(pInB)++;
-
-          /* Multiply and Accumlates */
-          sum = __SMLALD(pSourceA1, pSourceB1, sum);
-          sum = __SMLALD(pSourceA2, pSourceB2, sum);
-
-#else
-          /* read real and imag values from pSrcA and pSrcB buffer */
-          inA1 = *pInA++;
-          inB1 = *pInB++;
-          inA2 = *pInA++;
-          /* Multiply and Accumlates */
-          sum += inA1 * inB1;
-          inB2 = *pInB++;
-
-          inA1 = *pInA++;
-          inB1 = *pInB++;
-          /* Multiply and Accumlates */
-          sum += inA2 * inB2;
-          inA2 = *pInA++;
-          inB2 = *pInB++;
-
-          /* Multiply and Accumlates */
-          sum += inA1 * inB1;
-          sum += inA2 * inB2;
-
-#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
-
-          /* Decrement the loop counter */
-          colCnt--;
-        }
-
-        /* process remaining column samples */
-        colCnt = numColsA & 3u;
-
-        while(colCnt > 0u)
-        {
-          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
-          sum += *pInA++ * *pInB++;
-
-          /* Decrement the loop counter */
-          colCnt--;
-        }
-
-        /* Saturate and store the result in the destination buffer */
-        *px = (q15_t) (__SSAT((sum >> 15), 16));
-        px++;
-
-        /* Decrement the column loop counter */
-        col--;
-
-      } while(col > 0u);
-
-      i = i + numColsA;
-
-      /* Decrement the row loop counter */
-      row--;
-
-    } while(row > 0u);
-
-#else
-
-  /* Run the below code for Cortex-M0 */
-
-  q15_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
-  q15_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
-  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
-  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
-  q15_t *pOut = pDst->pData;                     /* output data matrix pointer */
-  q15_t *px;                                     /* Temporary output data matrix pointer */
-  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
-  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
-  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
-  uint16_t col, i = 0u, row = numRowsA, colCnt;  /* loop counters */
-  arm_status status;                             /* status of matrix multiplication */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
-  /* Check for matrix mismatch condition */
-  if((pSrcA->numCols != pSrcB->numRows) ||
-     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
-  {
-    /* Set status as ARM_MATH_SIZE_MISMATCH */
-    status = ARM_MATH_SIZE_MISMATCH;
-  }
-  else
-#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
-
-  {
-    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
-    /* row loop */
-    do
-    {
-      /* Output pointer is set to starting address of the row being processed */
-      px = pOut + i;
-
-      /* For every row wise process, the column loop counter is to be initiated */
-      col = numColsB;
-
-      /* For every row wise process, the pIn2 pointer is set          
-       ** to the starting address of the pSrcB data */
-      pIn2 = pSrcB->pData;
-
-      /* column loop */
-      do
-      {
-        /* Set the variable sum, that acts as accumulator, to zero */
-        sum = 0;
-
-        /* Initiate the pointer pIn1 to point to the starting address of pSrcA */
-        pIn1 = pInA;
-
-        /* Matrix A columns number of MAC operations are to be performed */
-        colCnt = numColsA;
-
-        /* matrix multiplication */
-        while(colCnt > 0u)
-        {
-          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
-          /* Perform the multiply-accumulates */
-          sum += (q31_t) * pIn1++ * *pIn2;
-          pIn2 += numColsB;
-
-          /* Decrement the loop counter */
-          colCnt--;
-        }
-
-        /* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */
-        /* Saturate and store the result in the destination buffer */
-        *px++ = (q15_t) __SSAT((sum >> 15), 16);
-
-        /* Decrement the column loop counter */
-        col--;
-
-        /* Update the pointer pIn2 to point to the  starting address of the next column */
-        pIn2 = pInB + (numColsB - col);
-
-      } while(col > 0u);
-
-      /* Update the pointer pSrcA to point to the  starting address of the next row */
-      i = i + numColsB;
-      pInA = pInA + numColsA;
-
-      /* Decrement the row loop counter */
-      row--;
-
-    } while(row > 0u);
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-    /* set status as ARM_MATH_SUCCESS */
-    status = ARM_MATH_SUCCESS;
-  }
-
-  /* Return to application */
-  return (status);
-}
-
-/**        
- * @} end of MatrixMult group        
- */