Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
cmsis_dsp/TransformFunctions/arm_rfft_f32.c@1:fdd22bb7aa52, 2012-11-28 (annotated)
- Committer:
- emilmont
- Date:
- Wed Nov 28 12:30:09 2012 +0000
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
DSP library code
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
emilmont | 1:fdd22bb7aa52 | 1 | /* ---------------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 2 | * Copyright (C) 2010 ARM Limited. All rights reserved. |
emilmont | 1:fdd22bb7aa52 | 3 | * |
emilmont | 1:fdd22bb7aa52 | 4 | * $Date: 15. February 2012 |
emilmont | 1:fdd22bb7aa52 | 5 | * $Revision: V1.1.0 |
emilmont | 1:fdd22bb7aa52 | 6 | * |
emilmont | 1:fdd22bb7aa52 | 7 | * Project: CMSIS DSP Library |
emilmont | 1:fdd22bb7aa52 | 8 | * Title: arm_rfft_f32.c |
emilmont | 1:fdd22bb7aa52 | 9 | * |
emilmont | 1:fdd22bb7aa52 | 10 | * Description: RFFT & RIFFT Floating point process function |
emilmont | 1:fdd22bb7aa52 | 11 | * |
emilmont | 1:fdd22bb7aa52 | 12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
emilmont | 1:fdd22bb7aa52 | 13 | * |
emilmont | 1:fdd22bb7aa52 | 14 | * Version 1.1.0 2012/02/15 |
emilmont | 1:fdd22bb7aa52 | 15 | * Updated with more optimizations, bug fixes and minor API changes. |
emilmont | 1:fdd22bb7aa52 | 16 | * |
emilmont | 1:fdd22bb7aa52 | 17 | * Version 1.0.10 2011/7/15 |
emilmont | 1:fdd22bb7aa52 | 18 | * Big Endian support added and Merged M0 and M3/M4 Source code. |
emilmont | 1:fdd22bb7aa52 | 19 | * |
emilmont | 1:fdd22bb7aa52 | 20 | * Version 1.0.3 2010/11/29 |
emilmont | 1:fdd22bb7aa52 | 21 | * Re-organized the CMSIS folders and updated documentation. |
emilmont | 1:fdd22bb7aa52 | 22 | * |
emilmont | 1:fdd22bb7aa52 | 23 | * Version 1.0.2 2010/11/11 |
emilmont | 1:fdd22bb7aa52 | 24 | * Documentation updated. |
emilmont | 1:fdd22bb7aa52 | 25 | * |
emilmont | 1:fdd22bb7aa52 | 26 | * Version 1.0.1 2010/10/05 |
emilmont | 1:fdd22bb7aa52 | 27 | * Production release and review comments incorporated. |
emilmont | 1:fdd22bb7aa52 | 28 | * |
emilmont | 1:fdd22bb7aa52 | 29 | * Version 1.0.0 2010/09/20 |
emilmont | 1:fdd22bb7aa52 | 30 | * Production release and review comments incorporated. |
emilmont | 1:fdd22bb7aa52 | 31 | * |
emilmont | 1:fdd22bb7aa52 | 32 | * Version 0.0.7 2010/06/10 |
emilmont | 1:fdd22bb7aa52 | 33 | * Misra-C changes done |
emilmont | 1:fdd22bb7aa52 | 34 | * -------------------------------------------------------------------- */ |
emilmont | 1:fdd22bb7aa52 | 35 | |
emilmont | 1:fdd22bb7aa52 | 36 | #include "arm_math.h" |
emilmont | 1:fdd22bb7aa52 | 37 | |
emilmont | 1:fdd22bb7aa52 | 38 | /** |
emilmont | 1:fdd22bb7aa52 | 39 | * @ingroup groupTransforms |
emilmont | 1:fdd22bb7aa52 | 40 | */ |
emilmont | 1:fdd22bb7aa52 | 41 | |
emilmont | 1:fdd22bb7aa52 | 42 | /** |
emilmont | 1:fdd22bb7aa52 | 43 | * @defgroup RFFT_RIFFT Real FFT Functions |
emilmont | 1:fdd22bb7aa52 | 44 | * |
emilmont | 1:fdd22bb7aa52 | 45 | * \par |
emilmont | 1:fdd22bb7aa52 | 46 | * Complex FFT/IFFT typically assumes complex input and output. However many applications use real valued data in time domain. |
emilmont | 1:fdd22bb7aa52 | 47 | * Real FFT/IFFT efficiently process real valued sequences with the advantage of requirement of low memory and with less complexity. |
emilmont | 1:fdd22bb7aa52 | 48 | * |
emilmont | 1:fdd22bb7aa52 | 49 | * \par |
emilmont | 1:fdd22bb7aa52 | 50 | * This set of functions implements Real Fast Fourier Transforms(RFFT) and Real Inverse Fast Fourier Transform(RIFFT) |
emilmont | 1:fdd22bb7aa52 | 51 | * for Q15, Q31, and floating-point data types. |
emilmont | 1:fdd22bb7aa52 | 52 | * |
emilmont | 1:fdd22bb7aa52 | 53 | * |
emilmont | 1:fdd22bb7aa52 | 54 | * \par Algorithm: |
emilmont | 1:fdd22bb7aa52 | 55 | * |
emilmont | 1:fdd22bb7aa52 | 56 | * <b>Real Fast Fourier Transform:</b> |
emilmont | 1:fdd22bb7aa52 | 57 | * \par |
emilmont | 1:fdd22bb7aa52 | 58 | * Real FFT of N-point is calculated using CFFT of N/2-point and Split RFFT process as shown below figure. |
emilmont | 1:fdd22bb7aa52 | 59 | * \par |
emilmont | 1:fdd22bb7aa52 | 60 | * \image html RFFT.gif "Real Fast Fourier Transform" |
emilmont | 1:fdd22bb7aa52 | 61 | * \par |
emilmont | 1:fdd22bb7aa52 | 62 | * The RFFT functions operate on blocks of input and output data and each call to the function processes |
emilmont | 1:fdd22bb7aa52 | 63 | * <code>fftLenR</code> samples through the transform. <code>pSrc</code> points to input array containing <code>fftLenR</code> values. |
emilmont | 1:fdd22bb7aa52 | 64 | * <code>pDst</code> points to output array containing <code>2*fftLenR</code> values. \n |
emilmont | 1:fdd22bb7aa52 | 65 | * Input for real FFT is in the order of |
emilmont | 1:fdd22bb7aa52 | 66 | * <pre>{real[0], real[1], real[2], real[3], ..}</pre> |
emilmont | 1:fdd22bb7aa52 | 67 | * Output for real FFT is complex and are in the order of |
emilmont | 1:fdd22bb7aa52 | 68 | * <pre>{real(0), imag(0), real(1), imag(1), ...}</pre> |
emilmont | 1:fdd22bb7aa52 | 69 | * |
emilmont | 1:fdd22bb7aa52 | 70 | * <b>Real Inverse Fast Fourier Transform:</b> |
emilmont | 1:fdd22bb7aa52 | 71 | * \par |
emilmont | 1:fdd22bb7aa52 | 72 | * Real IFFT of N-point is calculated using Split RIFFT process and CFFT of N/2-point as shown below figure. |
emilmont | 1:fdd22bb7aa52 | 73 | * \par |
emilmont | 1:fdd22bb7aa52 | 74 | * \image html RIFFT.gif "Real Inverse Fast Fourier Transform" |
emilmont | 1:fdd22bb7aa52 | 75 | * \par |
emilmont | 1:fdd22bb7aa52 | 76 | * The RIFFT functions operate on blocks of input and output data and each call to the function processes |
emilmont | 1:fdd22bb7aa52 | 77 | * <code>2*fftLenR</code> samples through the transform. <code>pSrc</code> points to input array containing <code>2*fftLenR</code> values. |
emilmont | 1:fdd22bb7aa52 | 78 | * <code>pDst</code> points to output array containing <code>fftLenR</code> values. \n |
emilmont | 1:fdd22bb7aa52 | 79 | * Input for real IFFT is complex and are in the order of |
emilmont | 1:fdd22bb7aa52 | 80 | * <pre>{real(0), imag(0), real(1), imag(1), ...}</pre> |
emilmont | 1:fdd22bb7aa52 | 81 | * Output for real IFFT is real and in the order of |
emilmont | 1:fdd22bb7aa52 | 82 | * <pre>{real[0], real[1], real[2], real[3], ..}</pre> |
emilmont | 1:fdd22bb7aa52 | 83 | * |
emilmont | 1:fdd22bb7aa52 | 84 | * \par Lengths supported by the transform: |
emilmont | 1:fdd22bb7aa52 | 85 | * \par |
emilmont | 1:fdd22bb7aa52 | 86 | * Real FFT/IFFT supports the lengths [128, 512, 2048], as it internally uses CFFT/CIFFT. |
emilmont | 1:fdd22bb7aa52 | 87 | * |
emilmont | 1:fdd22bb7aa52 | 88 | * \par Instance Structure |
emilmont | 1:fdd22bb7aa52 | 89 | * A separate instance structure must be defined for each Instance but the twiddle factors can be reused. |
emilmont | 1:fdd22bb7aa52 | 90 | * There are separate instance structure declarations for each of the 3 supported data types. |
emilmont | 1:fdd22bb7aa52 | 91 | * |
emilmont | 1:fdd22bb7aa52 | 92 | * \par Initialization Functions |
emilmont | 1:fdd22bb7aa52 | 93 | * There is also an associated initialization function for each data type. |
emilmont | 1:fdd22bb7aa52 | 94 | * The initialization function performs the following operations: |
emilmont | 1:fdd22bb7aa52 | 95 | * - Sets the values of the internal structure fields. |
emilmont | 1:fdd22bb7aa52 | 96 | * - Initializes twiddle factor tables. |
emilmont | 1:fdd22bb7aa52 | 97 | * - Initializes CFFT data structure fields. |
emilmont | 1:fdd22bb7aa52 | 98 | * \par |
emilmont | 1:fdd22bb7aa52 | 99 | * Use of the initialization function is optional. |
emilmont | 1:fdd22bb7aa52 | 100 | * However, if the initialization function is used, then the instance structure cannot be placed into a const data section. |
emilmont | 1:fdd22bb7aa52 | 101 | * To place an instance structure into a const data section, the instance structure must be manually initialized. |
emilmont | 1:fdd22bb7aa52 | 102 | * Manually initialize the instance structure as follows: |
emilmont | 1:fdd22bb7aa52 | 103 | * <pre> |
emilmont | 1:fdd22bb7aa52 | 104 | *arm_rfft_instance_f32 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
emilmont | 1:fdd22bb7aa52 | 105 | *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
emilmont | 1:fdd22bb7aa52 | 106 | *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
emilmont | 1:fdd22bb7aa52 | 107 | * </pre> |
emilmont | 1:fdd22bb7aa52 | 108 | * where <code>fftLenReal</code> length of RFFT/RIFFT; <code>fftLenBy2</code> length of CFFT/CIFFT. |
emilmont | 1:fdd22bb7aa52 | 109 | * <code>ifftFlagR</code> Flag for selection of RFFT or RIFFT(Set ifftFlagR to calculate RIFFT otherwise calculates RFFT); |
emilmont | 1:fdd22bb7aa52 | 110 | * <code>bitReverseFlagR</code> Flag for selection of output order(Set bitReverseFlagR to output in normal order otherwise output in bit reversed order); |
emilmont | 1:fdd22bb7aa52 | 111 | * <code>twidCoefRModifier</code> modifier for twiddle factor table which supports 128, 512, 2048 RFFT lengths with same table; |
emilmont | 1:fdd22bb7aa52 | 112 | * <code>pTwiddleAReal</code>points to A array of twiddle coefficients; <code>pTwiddleBReal</code>points to B array of twiddle coefficients; |
emilmont | 1:fdd22bb7aa52 | 113 | * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure also needs to be initialized, refer to arm_cfft_radix4_f32() for details regarding |
emilmont | 1:fdd22bb7aa52 | 114 | * static initialization of cfft structure. |
emilmont | 1:fdd22bb7aa52 | 115 | * |
emilmont | 1:fdd22bb7aa52 | 116 | * \par Fixed-Point Behavior |
emilmont | 1:fdd22bb7aa52 | 117 | * Care must be taken when using the fixed-point versions of the RFFT/RIFFT function. |
emilmont | 1:fdd22bb7aa52 | 118 | * Refer to the function specific documentation below for usage guidelines. |
emilmont | 1:fdd22bb7aa52 | 119 | */ |
emilmont | 1:fdd22bb7aa52 | 120 | |
emilmont | 1:fdd22bb7aa52 | 121 | /*-------------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 122 | * Internal functions prototypes |
emilmont | 1:fdd22bb7aa52 | 123 | *--------------------------------------------------------------------*/ |
emilmont | 1:fdd22bb7aa52 | 124 | |
emilmont | 1:fdd22bb7aa52 | 125 | void arm_split_rfft_f32( |
emilmont | 1:fdd22bb7aa52 | 126 | float32_t * pSrc, |
emilmont | 1:fdd22bb7aa52 | 127 | uint32_t fftLen, |
emilmont | 1:fdd22bb7aa52 | 128 | float32_t * pATable, |
emilmont | 1:fdd22bb7aa52 | 129 | float32_t * pBTable, |
emilmont | 1:fdd22bb7aa52 | 130 | float32_t * pDst, |
emilmont | 1:fdd22bb7aa52 | 131 | uint32_t modifier); |
emilmont | 1:fdd22bb7aa52 | 132 | void arm_split_rifft_f32( |
emilmont | 1:fdd22bb7aa52 | 133 | float32_t * pSrc, |
emilmont | 1:fdd22bb7aa52 | 134 | uint32_t fftLen, |
emilmont | 1:fdd22bb7aa52 | 135 | float32_t * pATable, |
emilmont | 1:fdd22bb7aa52 | 136 | float32_t * pBTable, |
emilmont | 1:fdd22bb7aa52 | 137 | float32_t * pDst, |
emilmont | 1:fdd22bb7aa52 | 138 | uint32_t modifier); |
emilmont | 1:fdd22bb7aa52 | 139 | |
emilmont | 1:fdd22bb7aa52 | 140 | /** |
emilmont | 1:fdd22bb7aa52 | 141 | * @addtogroup RFFT_RIFFT |
emilmont | 1:fdd22bb7aa52 | 142 | * @{ |
emilmont | 1:fdd22bb7aa52 | 143 | */ |
emilmont | 1:fdd22bb7aa52 | 144 | |
emilmont | 1:fdd22bb7aa52 | 145 | /** |
emilmont | 1:fdd22bb7aa52 | 146 | * @brief Processing function for the floating-point RFFT/RIFFT. |
emilmont | 1:fdd22bb7aa52 | 147 | * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure. |
emilmont | 1:fdd22bb7aa52 | 148 | * @param[in] *pSrc points to the input buffer. |
emilmont | 1:fdd22bb7aa52 | 149 | * @param[out] *pDst points to the output buffer. |
emilmont | 1:fdd22bb7aa52 | 150 | * @return none. |
emilmont | 1:fdd22bb7aa52 | 151 | */ |
emilmont | 1:fdd22bb7aa52 | 152 | |
emilmont | 1:fdd22bb7aa52 | 153 | void arm_rfft_f32( |
emilmont | 1:fdd22bb7aa52 | 154 | const arm_rfft_instance_f32 * S, |
emilmont | 1:fdd22bb7aa52 | 155 | float32_t * pSrc, |
emilmont | 1:fdd22bb7aa52 | 156 | float32_t * pDst) |
emilmont | 1:fdd22bb7aa52 | 157 | { |
emilmont | 1:fdd22bb7aa52 | 158 | const arm_cfft_radix4_instance_f32 *S_CFFT = S->pCfft; |
emilmont | 1:fdd22bb7aa52 | 159 | |
emilmont | 1:fdd22bb7aa52 | 160 | |
emilmont | 1:fdd22bb7aa52 | 161 | /* Calculation of Real IFFT of input */ |
emilmont | 1:fdd22bb7aa52 | 162 | if(S->ifftFlagR == 1u) |
emilmont | 1:fdd22bb7aa52 | 163 | { |
emilmont | 1:fdd22bb7aa52 | 164 | /* Real IFFT core process */ |
emilmont | 1:fdd22bb7aa52 | 165 | arm_split_rifft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal, |
emilmont | 1:fdd22bb7aa52 | 166 | S->pTwiddleBReal, pDst, S->twidCoefRModifier); |
emilmont | 1:fdd22bb7aa52 | 167 | |
emilmont | 1:fdd22bb7aa52 | 168 | |
emilmont | 1:fdd22bb7aa52 | 169 | /* Complex radix-4 IFFT process */ |
emilmont | 1:fdd22bb7aa52 | 170 | arm_radix4_butterfly_inverse_f32(pDst, S_CFFT->fftLen, |
emilmont | 1:fdd22bb7aa52 | 171 | S_CFFT->pTwiddle, |
emilmont | 1:fdd22bb7aa52 | 172 | S_CFFT->twidCoefModifier, |
emilmont | 1:fdd22bb7aa52 | 173 | S_CFFT->onebyfftLen); |
emilmont | 1:fdd22bb7aa52 | 174 | |
emilmont | 1:fdd22bb7aa52 | 175 | /* Bit reversal process */ |
emilmont | 1:fdd22bb7aa52 | 176 | if(S->bitReverseFlagR == 1u) |
emilmont | 1:fdd22bb7aa52 | 177 | { |
emilmont | 1:fdd22bb7aa52 | 178 | arm_bitreversal_f32(pDst, S_CFFT->fftLen, |
emilmont | 1:fdd22bb7aa52 | 179 | S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); |
emilmont | 1:fdd22bb7aa52 | 180 | } |
emilmont | 1:fdd22bb7aa52 | 181 | } |
emilmont | 1:fdd22bb7aa52 | 182 | else |
emilmont | 1:fdd22bb7aa52 | 183 | { |
emilmont | 1:fdd22bb7aa52 | 184 | |
emilmont | 1:fdd22bb7aa52 | 185 | /* Calculation of RFFT of input */ |
emilmont | 1:fdd22bb7aa52 | 186 | |
emilmont | 1:fdd22bb7aa52 | 187 | /* Complex radix-4 FFT process */ |
emilmont | 1:fdd22bb7aa52 | 188 | arm_radix4_butterfly_f32(pSrc, S_CFFT->fftLen, |
emilmont | 1:fdd22bb7aa52 | 189 | S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); |
emilmont | 1:fdd22bb7aa52 | 190 | |
emilmont | 1:fdd22bb7aa52 | 191 | /* Bit reversal process */ |
emilmont | 1:fdd22bb7aa52 | 192 | if(S->bitReverseFlagR == 1u) |
emilmont | 1:fdd22bb7aa52 | 193 | { |
emilmont | 1:fdd22bb7aa52 | 194 | arm_bitreversal_f32(pSrc, S_CFFT->fftLen, |
emilmont | 1:fdd22bb7aa52 | 195 | S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); |
emilmont | 1:fdd22bb7aa52 | 196 | } |
emilmont | 1:fdd22bb7aa52 | 197 | |
emilmont | 1:fdd22bb7aa52 | 198 | |
emilmont | 1:fdd22bb7aa52 | 199 | /* Real FFT core process */ |
emilmont | 1:fdd22bb7aa52 | 200 | arm_split_rfft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal, |
emilmont | 1:fdd22bb7aa52 | 201 | S->pTwiddleBReal, pDst, S->twidCoefRModifier); |
emilmont | 1:fdd22bb7aa52 | 202 | } |
emilmont | 1:fdd22bb7aa52 | 203 | |
emilmont | 1:fdd22bb7aa52 | 204 | } |
emilmont | 1:fdd22bb7aa52 | 205 | |
emilmont | 1:fdd22bb7aa52 | 206 | /** |
emilmont | 1:fdd22bb7aa52 | 207 | * @} end of RFFT_RIFFT group |
emilmont | 1:fdd22bb7aa52 | 208 | */ |
emilmont | 1:fdd22bb7aa52 | 209 | |
emilmont | 1:fdd22bb7aa52 | 210 | /** |
emilmont | 1:fdd22bb7aa52 | 211 | * @brief Core Real FFT process |
emilmont | 1:fdd22bb7aa52 | 212 | * @param[in] *pSrc points to the input buffer. |
emilmont | 1:fdd22bb7aa52 | 213 | * @param[in] fftLen length of FFT. |
emilmont | 1:fdd22bb7aa52 | 214 | * @param[in] *pATable points to the twiddle Coef A buffer. |
emilmont | 1:fdd22bb7aa52 | 215 | * @param[in] *pBTable points to the twiddle Coef B buffer. |
emilmont | 1:fdd22bb7aa52 | 216 | * @param[out] *pDst points to the output buffer. |
emilmont | 1:fdd22bb7aa52 | 217 | * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
emilmont | 1:fdd22bb7aa52 | 218 | * @return none. |
emilmont | 1:fdd22bb7aa52 | 219 | */ |
emilmont | 1:fdd22bb7aa52 | 220 | |
emilmont | 1:fdd22bb7aa52 | 221 | void arm_split_rfft_f32( |
emilmont | 1:fdd22bb7aa52 | 222 | float32_t * pSrc, |
emilmont | 1:fdd22bb7aa52 | 223 | uint32_t fftLen, |
emilmont | 1:fdd22bb7aa52 | 224 | float32_t * pATable, |
emilmont | 1:fdd22bb7aa52 | 225 | float32_t * pBTable, |
emilmont | 1:fdd22bb7aa52 | 226 | float32_t * pDst, |
emilmont | 1:fdd22bb7aa52 | 227 | uint32_t modifier) |
emilmont | 1:fdd22bb7aa52 | 228 | { |
emilmont | 1:fdd22bb7aa52 | 229 | uint32_t i; /* Loop Counter */ |
emilmont | 1:fdd22bb7aa52 | 230 | float32_t outR, outI; /* Temporary variables for output */ |
emilmont | 1:fdd22bb7aa52 | 231 | float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ |
emilmont | 1:fdd22bb7aa52 | 232 | float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ |
emilmont | 1:fdd22bb7aa52 | 233 | float32_t *pDst1 = &pDst[2], *pDst2 = &pDst[(4u * fftLen) - 1u]; /* temp pointers for output buffer */ |
emilmont | 1:fdd22bb7aa52 | 234 | float32_t *pSrc1 = &pSrc[2], *pSrc2 = &pSrc[(2u * fftLen) - 1u]; /* temp pointers for input buffer */ |
emilmont | 1:fdd22bb7aa52 | 235 | |
emilmont | 1:fdd22bb7aa52 | 236 | /* Init coefficient pointers */ |
emilmont | 1:fdd22bb7aa52 | 237 | pCoefA = &pATable[modifier * 2u]; |
emilmont | 1:fdd22bb7aa52 | 238 | pCoefB = &pBTable[modifier * 2u]; |
emilmont | 1:fdd22bb7aa52 | 239 | |
emilmont | 1:fdd22bb7aa52 | 240 | i = fftLen - 1u; |
emilmont | 1:fdd22bb7aa52 | 241 | |
emilmont | 1:fdd22bb7aa52 | 242 | while(i > 0u) |
emilmont | 1:fdd22bb7aa52 | 243 | { |
emilmont | 1:fdd22bb7aa52 | 244 | /* |
emilmont | 1:fdd22bb7aa52 | 245 | outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] |
emilmont | 1:fdd22bb7aa52 | 246 | + pSrc[2 * n - 2 * i] * pBTable[2 * i] + |
emilmont | 1:fdd22bb7aa52 | 247 | pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); |
emilmont | 1:fdd22bb7aa52 | 248 | */ |
emilmont | 1:fdd22bb7aa52 | 249 | |
emilmont | 1:fdd22bb7aa52 | 250 | /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + |
emilmont | 1:fdd22bb7aa52 | 251 | pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - |
emilmont | 1:fdd22bb7aa52 | 252 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ |
emilmont | 1:fdd22bb7aa52 | 253 | |
emilmont | 1:fdd22bb7aa52 | 254 | /* read pATable[2 * i] */ |
emilmont | 1:fdd22bb7aa52 | 255 | CoefA1 = *pCoefA++; |
emilmont | 1:fdd22bb7aa52 | 256 | /* pATable[2 * i + 1] */ |
emilmont | 1:fdd22bb7aa52 | 257 | CoefA2 = *pCoefA; |
emilmont | 1:fdd22bb7aa52 | 258 | |
emilmont | 1:fdd22bb7aa52 | 259 | /* pSrc[2 * i] * pATable[2 * i] */ |
emilmont | 1:fdd22bb7aa52 | 260 | outR = *pSrc1 * CoefA1; |
emilmont | 1:fdd22bb7aa52 | 261 | /* pSrc[2 * i] * CoefA2 */ |
emilmont | 1:fdd22bb7aa52 | 262 | outI = *pSrc1++ * CoefA2; |
emilmont | 1:fdd22bb7aa52 | 263 | |
emilmont | 1:fdd22bb7aa52 | 264 | /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */ |
emilmont | 1:fdd22bb7aa52 | 265 | outR -= (*pSrc1 + *pSrc2) * CoefA2; |
emilmont | 1:fdd22bb7aa52 | 266 | /* pSrc[2 * i + 1] * CoefA1 */ |
emilmont | 1:fdd22bb7aa52 | 267 | outI += *pSrc1++ * CoefA1; |
emilmont | 1:fdd22bb7aa52 | 268 | |
emilmont | 1:fdd22bb7aa52 | 269 | CoefB1 = *pCoefB; |
emilmont | 1:fdd22bb7aa52 | 270 | |
emilmont | 1:fdd22bb7aa52 | 271 | /* pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */ |
emilmont | 1:fdd22bb7aa52 | 272 | outI -= *pSrc2-- * CoefB1; |
emilmont | 1:fdd22bb7aa52 | 273 | /* pSrc[2 * fftLen - 2 * i] * CoefA2 */ |
emilmont | 1:fdd22bb7aa52 | 274 | outI -= *pSrc2 * CoefA2; |
emilmont | 1:fdd22bb7aa52 | 275 | |
emilmont | 1:fdd22bb7aa52 | 276 | /* pSrc[2 * fftLen - 2 * i] * CoefB1 */ |
emilmont | 1:fdd22bb7aa52 | 277 | outR += *pSrc2-- * CoefB1; |
emilmont | 1:fdd22bb7aa52 | 278 | |
emilmont | 1:fdd22bb7aa52 | 279 | /* write output */ |
emilmont | 1:fdd22bb7aa52 | 280 | *pDst1++ = outR; |
emilmont | 1:fdd22bb7aa52 | 281 | *pDst1++ = outI; |
emilmont | 1:fdd22bb7aa52 | 282 | |
emilmont | 1:fdd22bb7aa52 | 283 | /* write complex conjugate output */ |
emilmont | 1:fdd22bb7aa52 | 284 | *pDst2-- = -outI; |
emilmont | 1:fdd22bb7aa52 | 285 | *pDst2-- = outR; |
emilmont | 1:fdd22bb7aa52 | 286 | |
emilmont | 1:fdd22bb7aa52 | 287 | /* update coefficient pointer */ |
emilmont | 1:fdd22bb7aa52 | 288 | pCoefB = pCoefB + (modifier * 2u); |
emilmont | 1:fdd22bb7aa52 | 289 | pCoefA = pCoefA + ((modifier * 2u) - 1u); |
emilmont | 1:fdd22bb7aa52 | 290 | |
emilmont | 1:fdd22bb7aa52 | 291 | i--; |
emilmont | 1:fdd22bb7aa52 | 292 | |
emilmont | 1:fdd22bb7aa52 | 293 | } |
emilmont | 1:fdd22bb7aa52 | 294 | |
emilmont | 1:fdd22bb7aa52 | 295 | pDst[2u * fftLen] = pSrc[0] - pSrc[1]; |
emilmont | 1:fdd22bb7aa52 | 296 | pDst[(2u * fftLen) + 1u] = 0.0f; |
emilmont | 1:fdd22bb7aa52 | 297 | |
emilmont | 1:fdd22bb7aa52 | 298 | pDst[0] = pSrc[0] + pSrc[1]; |
emilmont | 1:fdd22bb7aa52 | 299 | pDst[1] = 0.0f; |
emilmont | 1:fdd22bb7aa52 | 300 | |
emilmont | 1:fdd22bb7aa52 | 301 | } |
emilmont | 1:fdd22bb7aa52 | 302 | |
emilmont | 1:fdd22bb7aa52 | 303 | |
emilmont | 1:fdd22bb7aa52 | 304 | /** |
emilmont | 1:fdd22bb7aa52 | 305 | * @brief Core Real IFFT process |
emilmont | 1:fdd22bb7aa52 | 306 | * @param[in] *pSrc points to the input buffer. |
emilmont | 1:fdd22bb7aa52 | 307 | * @param[in] fftLen length of FFT. |
emilmont | 1:fdd22bb7aa52 | 308 | * @param[in] *pATable points to the twiddle Coef A buffer. |
emilmont | 1:fdd22bb7aa52 | 309 | * @param[in] *pBTable points to the twiddle Coef B buffer. |
emilmont | 1:fdd22bb7aa52 | 310 | * @param[out] *pDst points to the output buffer. |
emilmont | 1:fdd22bb7aa52 | 311 | * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
emilmont | 1:fdd22bb7aa52 | 312 | * @return none. |
emilmont | 1:fdd22bb7aa52 | 313 | */ |
emilmont | 1:fdd22bb7aa52 | 314 | |
emilmont | 1:fdd22bb7aa52 | 315 | void arm_split_rifft_f32( |
emilmont | 1:fdd22bb7aa52 | 316 | float32_t * pSrc, |
emilmont | 1:fdd22bb7aa52 | 317 | uint32_t fftLen, |
emilmont | 1:fdd22bb7aa52 | 318 | float32_t * pATable, |
emilmont | 1:fdd22bb7aa52 | 319 | float32_t * pBTable, |
emilmont | 1:fdd22bb7aa52 | 320 | float32_t * pDst, |
emilmont | 1:fdd22bb7aa52 | 321 | uint32_t modifier) |
emilmont | 1:fdd22bb7aa52 | 322 | { |
emilmont | 1:fdd22bb7aa52 | 323 | float32_t outR, outI; /* Temporary variables for output */ |
emilmont | 1:fdd22bb7aa52 | 324 | float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ |
emilmont | 1:fdd22bb7aa52 | 325 | float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ |
emilmont | 1:fdd22bb7aa52 | 326 | float32_t *pSrc1 = &pSrc[0], *pSrc2 = &pSrc[(2u * fftLen) + 1u]; |
emilmont | 1:fdd22bb7aa52 | 327 | |
emilmont | 1:fdd22bb7aa52 | 328 | pCoefA = &pATable[0]; |
emilmont | 1:fdd22bb7aa52 | 329 | pCoefB = &pBTable[0]; |
emilmont | 1:fdd22bb7aa52 | 330 | |
emilmont | 1:fdd22bb7aa52 | 331 | while(fftLen > 0u) |
emilmont | 1:fdd22bb7aa52 | 332 | { |
emilmont | 1:fdd22bb7aa52 | 333 | /* |
emilmont | 1:fdd22bb7aa52 | 334 | outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + |
emilmont | 1:fdd22bb7aa52 | 335 | pIn[2 * n - 2 * i] * pBTable[2 * i] - |
emilmont | 1:fdd22bb7aa52 | 336 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); |
emilmont | 1:fdd22bb7aa52 | 337 | |
emilmont | 1:fdd22bb7aa52 | 338 | outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - |
emilmont | 1:fdd22bb7aa52 | 339 | pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - |
emilmont | 1:fdd22bb7aa52 | 340 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); |
emilmont | 1:fdd22bb7aa52 | 341 | |
emilmont | 1:fdd22bb7aa52 | 342 | */ |
emilmont | 1:fdd22bb7aa52 | 343 | |
emilmont | 1:fdd22bb7aa52 | 344 | CoefA1 = *pCoefA++; |
emilmont | 1:fdd22bb7aa52 | 345 | CoefA2 = *pCoefA; |
emilmont | 1:fdd22bb7aa52 | 346 | |
emilmont | 1:fdd22bb7aa52 | 347 | /* outR = (pSrc[2 * i] * CoefA1 */ |
emilmont | 1:fdd22bb7aa52 | 348 | outR = *pSrc1 * CoefA1; |
emilmont | 1:fdd22bb7aa52 | 349 | |
emilmont | 1:fdd22bb7aa52 | 350 | /* - pSrc[2 * i] * CoefA2 */ |
emilmont | 1:fdd22bb7aa52 | 351 | outI = -(*pSrc1++) * CoefA2; |
emilmont | 1:fdd22bb7aa52 | 352 | |
emilmont | 1:fdd22bb7aa52 | 353 | /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */ |
emilmont | 1:fdd22bb7aa52 | 354 | outR += (*pSrc1 + *pSrc2) * CoefA2; |
emilmont | 1:fdd22bb7aa52 | 355 | |
emilmont | 1:fdd22bb7aa52 | 356 | /* pSrc[2 * i + 1] * CoefA1 */ |
emilmont | 1:fdd22bb7aa52 | 357 | outI += (*pSrc1++) * CoefA1; |
emilmont | 1:fdd22bb7aa52 | 358 | |
emilmont | 1:fdd22bb7aa52 | 359 | CoefB1 = *pCoefB; |
emilmont | 1:fdd22bb7aa52 | 360 | |
emilmont | 1:fdd22bb7aa52 | 361 | /* - pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */ |
emilmont | 1:fdd22bb7aa52 | 362 | outI -= *pSrc2-- * CoefB1; |
emilmont | 1:fdd22bb7aa52 | 363 | |
emilmont | 1:fdd22bb7aa52 | 364 | /* pSrc[2 * fftLen - 2 * i] * CoefB1 */ |
emilmont | 1:fdd22bb7aa52 | 365 | outR += *pSrc2 * CoefB1; |
emilmont | 1:fdd22bb7aa52 | 366 | |
emilmont | 1:fdd22bb7aa52 | 367 | /* pSrc[2 * fftLen - 2 * i] * CoefA2 */ |
emilmont | 1:fdd22bb7aa52 | 368 | outI += *pSrc2-- * CoefA2; |
emilmont | 1:fdd22bb7aa52 | 369 | |
emilmont | 1:fdd22bb7aa52 | 370 | /* write output */ |
emilmont | 1:fdd22bb7aa52 | 371 | *pDst++ = outR; |
emilmont | 1:fdd22bb7aa52 | 372 | *pDst++ = outI; |
emilmont | 1:fdd22bb7aa52 | 373 | |
emilmont | 1:fdd22bb7aa52 | 374 | /* update coefficient pointer */ |
emilmont | 1:fdd22bb7aa52 | 375 | pCoefB = pCoefB + (modifier * 2u); |
emilmont | 1:fdd22bb7aa52 | 376 | pCoefA = pCoefA + ((modifier * 2u) - 1u); |
emilmont | 1:fdd22bb7aa52 | 377 | |
emilmont | 1:fdd22bb7aa52 | 378 | /* Decrement loop count */ |
emilmont | 1:fdd22bb7aa52 | 379 | fftLen--; |
emilmont | 1:fdd22bb7aa52 | 380 | } |
emilmont | 1:fdd22bb7aa52 | 381 | |
emilmont | 1:fdd22bb7aa52 | 382 | } |