Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Committer:
emilmont
Date:
Wed Nov 28 12:30:09 2012 +0000
Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
DSP library code

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
emilmont 1:fdd22bb7aa52 2 * Copyright (C) 2010 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
emilmont 1:fdd22bb7aa52 4 * $Date: 15. February 2012
emilmont 1:fdd22bb7aa52 5 * $Revision: V1.1.0
emilmont 1:fdd22bb7aa52 6 *
emilmont 1:fdd22bb7aa52 7 * Project: CMSIS DSP Library
emilmont 1:fdd22bb7aa52 8 * Title: arm_sin_f32.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 1:fdd22bb7aa52 10 * Description: Fast sine calculation for floating-point values.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
emilmont 1:fdd22bb7aa52 14 * Version 1.1.0 2012/02/15
emilmont 1:fdd22bb7aa52 15 * Updated with more optimizations, bug fixes and minor API changes.
emilmont 1:fdd22bb7aa52 16 *
emilmont 1:fdd22bb7aa52 17 * Version 1.0.10 2011/7/15
emilmont 1:fdd22bb7aa52 18 * Big Endian support added and Merged M0 and M3/M4 Source code.
emilmont 1:fdd22bb7aa52 19 *
emilmont 1:fdd22bb7aa52 20 * Version 1.0.3 2010/11/29
emilmont 1:fdd22bb7aa52 21 * Re-organized the CMSIS folders and updated documentation.
emilmont 1:fdd22bb7aa52 22 *
emilmont 1:fdd22bb7aa52 23 * Version 1.0.2 2010/11/11
emilmont 1:fdd22bb7aa52 24 * Documentation updated.
emilmont 1:fdd22bb7aa52 25 *
emilmont 1:fdd22bb7aa52 26 * Version 1.0.1 2010/10/05
emilmont 1:fdd22bb7aa52 27 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 28 *
emilmont 1:fdd22bb7aa52 29 * Version 1.0.0 2010/09/20
emilmont 1:fdd22bb7aa52 30 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 31 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 32
emilmont 1:fdd22bb7aa52 33 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 34
emilmont 1:fdd22bb7aa52 35 /**
emilmont 1:fdd22bb7aa52 36 * @ingroup groupFastMath
emilmont 1:fdd22bb7aa52 37 */
emilmont 1:fdd22bb7aa52 38
emilmont 1:fdd22bb7aa52 39 /**
emilmont 1:fdd22bb7aa52 40 * @defgroup sin Sine
emilmont 1:fdd22bb7aa52 41 *
emilmont 1:fdd22bb7aa52 42 * Computes the trigonometric sine function using a combination of table lookup
emilmont 1:fdd22bb7aa52 43 * and cubic interpolation. There are separate functions for
emilmont 1:fdd22bb7aa52 44 * Q15, Q31, and floating-point data types.
emilmont 1:fdd22bb7aa52 45 * The input to the floating-point version is in radians while the
emilmont 1:fdd22bb7aa52 46 * fixed-point Q15 and Q31 have a scaled input with the range
emilmont 1:fdd22bb7aa52 47 * [0 +0.9999] mapping to [0 2*pi), Where range excludes 2*pi.
emilmont 1:fdd22bb7aa52 48 *
emilmont 1:fdd22bb7aa52 49 * The implementation is based on table lookup using 256 values together with cubic interpolation.
emilmont 1:fdd22bb7aa52 50 * The steps used are:
emilmont 1:fdd22bb7aa52 51 * -# Calculation of the nearest integer table index
emilmont 1:fdd22bb7aa52 52 * -# Fetch the four table values a, b, c, and d
emilmont 1:fdd22bb7aa52 53 * -# Compute the fractional portion (fract) of the table index.
emilmont 1:fdd22bb7aa52 54 * -# Calculation of wa, wb, wc, wd
emilmont 1:fdd22bb7aa52 55 * -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>
emilmont 1:fdd22bb7aa52 56 *
emilmont 1:fdd22bb7aa52 57 * where
emilmont 1:fdd22bb7aa52 58 * <pre>
emilmont 1:fdd22bb7aa52 59 * a=Table[index-1];
emilmont 1:fdd22bb7aa52 60 * b=Table[index+0];
emilmont 1:fdd22bb7aa52 61 * c=Table[index+1];
emilmont 1:fdd22bb7aa52 62 * d=Table[index+2];
emilmont 1:fdd22bb7aa52 63 * </pre>
emilmont 1:fdd22bb7aa52 64 * and
emilmont 1:fdd22bb7aa52 65 * <pre>
emilmont 1:fdd22bb7aa52 66 * wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
emilmont 1:fdd22bb7aa52 67 * wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
emilmont 1:fdd22bb7aa52 68 * wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
emilmont 1:fdd22bb7aa52 69 * wd=(1/6)*fract.^3 - (1/6)*fract;
emilmont 1:fdd22bb7aa52 70 * </pre>
emilmont 1:fdd22bb7aa52 71 */
emilmont 1:fdd22bb7aa52 72
emilmont 1:fdd22bb7aa52 73 /**
emilmont 1:fdd22bb7aa52 74 * @addtogroup sin
emilmont 1:fdd22bb7aa52 75 * @{
emilmont 1:fdd22bb7aa52 76 */
emilmont 1:fdd22bb7aa52 77
emilmont 1:fdd22bb7aa52 78
emilmont 1:fdd22bb7aa52 79 /**
emilmont 1:fdd22bb7aa52 80 * \par
emilmont 1:fdd22bb7aa52 81 * Example code for Generation of Floating-point Sin Table:
emilmont 1:fdd22bb7aa52 82 * tableSize = 256;
emilmont 1:fdd22bb7aa52 83 * <pre>for(n = -1; n < (tableSize + 1); n++)
emilmont 1:fdd22bb7aa52 84 * {
emilmont 1:fdd22bb7aa52 85 * sinTable[n+1]=sin(2*pi*n/tableSize);
emilmont 1:fdd22bb7aa52 86 * }</pre>
emilmont 1:fdd22bb7aa52 87 * \par
emilmont 1:fdd22bb7aa52 88 * where pi value is 3.14159265358979
emilmont 1:fdd22bb7aa52 89 */
emilmont 1:fdd22bb7aa52 90
emilmont 1:fdd22bb7aa52 91 static const float32_t sinTable[259] = {
emilmont 1:fdd22bb7aa52 92 -0.024541229009628296f, 0.000000000000000000f, 0.024541229009628296f,
emilmont 1:fdd22bb7aa52 93 0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
emilmont 1:fdd22bb7aa52 94 0.122410677373409270f, 0.146730467677116390f,
emilmont 1:fdd22bb7aa52 95 0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
emilmont 1:fdd22bb7aa52 96 0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
emilmont 1:fdd22bb7aa52 97 0.313681751489639280f, 0.336889863014221190f,
emilmont 1:fdd22bb7aa52 98 0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
emilmont 1:fdd22bb7aa52 99 0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
emilmont 1:fdd22bb7aa52 100 0.492898195981979370f, 0.514102756977081300f,
emilmont 1:fdd22bb7aa52 101 0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
emilmont 1:fdd22bb7aa52 102 0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
emilmont 1:fdd22bb7aa52 103 0.653172850608825680f, 0.671558976173400880f,
emilmont 1:fdd22bb7aa52 104 0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
emilmont 1:fdd22bb7aa52 105 0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
emilmont 1:fdd22bb7aa52 106 0.788346409797668460f, 0.803207516670227050f,
emilmont 1:fdd22bb7aa52 107 0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
emilmont 1:fdd22bb7aa52 108 0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
emilmont 1:fdd22bb7aa52 109 0.893224298954010010f, 0.903989315032958980f,
emilmont 1:fdd22bb7aa52 110 0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
emilmont 1:fdd22bb7aa52 111 0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
emilmont 1:fdd22bb7aa52 112 0.963776051998138430f, 0.970031261444091800f,
emilmont 1:fdd22bb7aa52 113 0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
emilmont 1:fdd22bb7aa52 114 0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
emilmont 1:fdd22bb7aa52 115 0.997290432453155520f, 0.998795449733734130f,
emilmont 1:fdd22bb7aa52 116 0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
emilmont 1:fdd22bb7aa52 117 0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
emilmont 1:fdd22bb7aa52 118 0.992479562759399410f, 0.989176511764526370f,
emilmont 1:fdd22bb7aa52 119 0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
emilmont 1:fdd22bb7aa52 120 0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
emilmont 1:fdd22bb7aa52 121 0.949528157711029050f, 0.941544055938720700f,
emilmont 1:fdd22bb7aa52 122 0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
emilmont 1:fdd22bb7aa52 123 0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
emilmont 1:fdd22bb7aa52 124 0.870086967945098880f, 0.857728600502014160f,
emilmont 1:fdd22bb7aa52 125 0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
emilmont 1:fdd22bb7aa52 126 0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
emilmont 1:fdd22bb7aa52 127 0.757208824157714840f, 0.740951120853424070f,
emilmont 1:fdd22bb7aa52 128 0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
emilmont 1:fdd22bb7aa52 129 0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
emilmont 1:fdd22bb7aa52 130 0.615231573581695560f, 0.595699310302734380f,
emilmont 1:fdd22bb7aa52 131 0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
emilmont 1:fdd22bb7aa52 132 0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
emilmont 1:fdd22bb7aa52 133 0.449611335992813110f, 0.427555084228515630f,
emilmont 1:fdd22bb7aa52 134 0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
emilmont 1:fdd22bb7aa52 135 0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
emilmont 1:fdd22bb7aa52 136 0.266712754964828490f, 0.242980182170867920f,
emilmont 1:fdd22bb7aa52 137 0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
emilmont 1:fdd22bb7aa52 138 0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
emilmont 1:fdd22bb7aa52 139 0.073564566671848297f, 0.049067676067352295f,
emilmont 1:fdd22bb7aa52 140 0.024541229009628296f, 0.000000000000000122f, -0.024541229009628296f,
emilmont 1:fdd22bb7aa52 141 -0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
emilmont 1:fdd22bb7aa52 142 -0.122410677373409270f, -0.146730467677116390f,
emilmont 1:fdd22bb7aa52 143 -0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
emilmont 1:fdd22bb7aa52 144 -0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
emilmont 1:fdd22bb7aa52 145 -0.313681751489639280f, -0.336889863014221190f,
emilmont 1:fdd22bb7aa52 146 -0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
emilmont 1:fdd22bb7aa52 147 -0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
emilmont 1:fdd22bb7aa52 148 -0.492898195981979370f, -0.514102756977081300f,
emilmont 1:fdd22bb7aa52 149 -0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
emilmont 1:fdd22bb7aa52 150 -0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
emilmont 1:fdd22bb7aa52 151 -0.653172850608825680f, -0.671558976173400880f,
emilmont 1:fdd22bb7aa52 152 -0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
emilmont 1:fdd22bb7aa52 153 -0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
emilmont 1:fdd22bb7aa52 154 -0.788346409797668460f, -0.803207516670227050f,
emilmont 1:fdd22bb7aa52 155 -0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
emilmont 1:fdd22bb7aa52 156 -0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
emilmont 1:fdd22bb7aa52 157 -0.893224298954010010f, -0.903989315032958980f,
emilmont 1:fdd22bb7aa52 158 -0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
emilmont 1:fdd22bb7aa52 159 -0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
emilmont 1:fdd22bb7aa52 160 -0.963776051998138430f, -0.970031261444091800f,
emilmont 1:fdd22bb7aa52 161 -0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
emilmont 1:fdd22bb7aa52 162 -0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
emilmont 1:fdd22bb7aa52 163 -0.997290432453155520f, -0.998795449733734130f,
emilmont 1:fdd22bb7aa52 164 -0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
emilmont 1:fdd22bb7aa52 165 -0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
emilmont 1:fdd22bb7aa52 166 -0.992479562759399410f, -0.989176511764526370f,
emilmont 1:fdd22bb7aa52 167 -0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
emilmont 1:fdd22bb7aa52 168 -0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
emilmont 1:fdd22bb7aa52 169 -0.949528157711029050f, -0.941544055938720700f,
emilmont 1:fdd22bb7aa52 170 -0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
emilmont 1:fdd22bb7aa52 171 -0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
emilmont 1:fdd22bb7aa52 172 -0.870086967945098880f, -0.857728600502014160f,
emilmont 1:fdd22bb7aa52 173 -0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
emilmont 1:fdd22bb7aa52 174 -0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
emilmont 1:fdd22bb7aa52 175 -0.757208824157714840f, -0.740951120853424070f,
emilmont 1:fdd22bb7aa52 176 -0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
emilmont 1:fdd22bb7aa52 177 -0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
emilmont 1:fdd22bb7aa52 178 -0.615231573581695560f, -0.595699310302734380f,
emilmont 1:fdd22bb7aa52 179 -0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
emilmont 1:fdd22bb7aa52 180 -0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
emilmont 1:fdd22bb7aa52 181 -0.449611335992813110f, -0.427555084228515630f,
emilmont 1:fdd22bb7aa52 182 -0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
emilmont 1:fdd22bb7aa52 183 -0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
emilmont 1:fdd22bb7aa52 184 -0.266712754964828490f, -0.242980182170867920f,
emilmont 1:fdd22bb7aa52 185 -0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
emilmont 1:fdd22bb7aa52 186 -0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
emilmont 1:fdd22bb7aa52 187 -0.073564566671848297f, -0.049067676067352295f,
emilmont 1:fdd22bb7aa52 188 -0.024541229009628296f, -0.000000000000000245f, 0.024541229009628296f
emilmont 1:fdd22bb7aa52 189 };
emilmont 1:fdd22bb7aa52 190
emilmont 1:fdd22bb7aa52 191
emilmont 1:fdd22bb7aa52 192 /**
emilmont 1:fdd22bb7aa52 193 * @brief Fast approximation to the trigonometric sine function for floating-point data.
emilmont 1:fdd22bb7aa52 194 * @param[in] x input value in radians.
emilmont 1:fdd22bb7aa52 195 * @return sin(x).
emilmont 1:fdd22bb7aa52 196 */
emilmont 1:fdd22bb7aa52 197
emilmont 1:fdd22bb7aa52 198 float32_t arm_sin_f32(
emilmont 1:fdd22bb7aa52 199 float32_t x)
emilmont 1:fdd22bb7aa52 200 {
emilmont 1:fdd22bb7aa52 201 float32_t sinVal, fract, in; /* Temporary variables for input, output */
emilmont 1:fdd22bb7aa52 202 int32_t index; /* Index variable */
emilmont 1:fdd22bb7aa52 203 uint32_t tableSize = (uint32_t) TABLE_SIZE; /* Initialise tablesize */
emilmont 1:fdd22bb7aa52 204 float32_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
emilmont 1:fdd22bb7aa52 205 float32_t a, b, c, d; /* Four nearest output values */
emilmont 1:fdd22bb7aa52 206 float32_t *tablePtr; /* Pointer to table */
emilmont 1:fdd22bb7aa52 207 int32_t n;
emilmont 1:fdd22bb7aa52 208 float32_t fractsq, fractby2, fractby6, fractby3, fractsqby2;
emilmont 1:fdd22bb7aa52 209 float32_t oneminusfractby2;
emilmont 1:fdd22bb7aa52 210 float32_t frby2xfrsq, frby6xfrsq;
emilmont 1:fdd22bb7aa52 211
emilmont 1:fdd22bb7aa52 212 /* input x is in radians */
emilmont 1:fdd22bb7aa52 213 /* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
emilmont 1:fdd22bb7aa52 214 in = x * 0.159154943092f;
emilmont 1:fdd22bb7aa52 215
emilmont 1:fdd22bb7aa52 216 /* Calculation of floor value of input */
emilmont 1:fdd22bb7aa52 217 n = (int32_t) in;
emilmont 1:fdd22bb7aa52 218
emilmont 1:fdd22bb7aa52 219 /* Make negative values towards -infinity */
emilmont 1:fdd22bb7aa52 220 if(x < 0.0f)
emilmont 1:fdd22bb7aa52 221 {
emilmont 1:fdd22bb7aa52 222 n = n - 1;
emilmont 1:fdd22bb7aa52 223 }
emilmont 1:fdd22bb7aa52 224
emilmont 1:fdd22bb7aa52 225 /* Map input value to [0 1] */
emilmont 1:fdd22bb7aa52 226 in = in - (float32_t) n;
emilmont 1:fdd22bb7aa52 227
emilmont 1:fdd22bb7aa52 228 /* Calculation of index of the table */
emilmont 1:fdd22bb7aa52 229 index = (uint32_t) (tableSize * in);
emilmont 1:fdd22bb7aa52 230
emilmont 1:fdd22bb7aa52 231 /* fractional value calculation */
emilmont 1:fdd22bb7aa52 232 fract = ((float32_t) tableSize * in) - (float32_t) index;
emilmont 1:fdd22bb7aa52 233
emilmont 1:fdd22bb7aa52 234 /* Checking min and max index of table */
emilmont 1:fdd22bb7aa52 235 if(index < 0)
emilmont 1:fdd22bb7aa52 236 {
emilmont 1:fdd22bb7aa52 237 index = 0;
emilmont 1:fdd22bb7aa52 238 }
emilmont 1:fdd22bb7aa52 239 else if(index > 256)
emilmont 1:fdd22bb7aa52 240 {
emilmont 1:fdd22bb7aa52 241 index = 256;
emilmont 1:fdd22bb7aa52 242 }
emilmont 1:fdd22bb7aa52 243
emilmont 1:fdd22bb7aa52 244 /* Initialise table pointer */
emilmont 1:fdd22bb7aa52 245 tablePtr = (float32_t *) & sinTable[index];
emilmont 1:fdd22bb7aa52 246
emilmont 1:fdd22bb7aa52 247 /* Read four nearest values of input value from the sin table */
emilmont 1:fdd22bb7aa52 248 a = tablePtr[0];
emilmont 1:fdd22bb7aa52 249 b = tablePtr[1];
emilmont 1:fdd22bb7aa52 250 c = tablePtr[2];
emilmont 1:fdd22bb7aa52 251 d = tablePtr[3];
emilmont 1:fdd22bb7aa52 252
emilmont 1:fdd22bb7aa52 253 /* Cubic interpolation process */
emilmont 1:fdd22bb7aa52 254 fractsq = fract * fract;
emilmont 1:fdd22bb7aa52 255 fractby2 = fract * 0.5f;
emilmont 1:fdd22bb7aa52 256 fractby6 = fract * 0.166666667f;
emilmont 1:fdd22bb7aa52 257 fractby3 = fract * 0.3333333333333f;
emilmont 1:fdd22bb7aa52 258 fractsqby2 = fractsq * 0.5f;
emilmont 1:fdd22bb7aa52 259 frby2xfrsq = (fractby2) * fractsq;
emilmont 1:fdd22bb7aa52 260 frby6xfrsq = (fractby6) * fractsq;
emilmont 1:fdd22bb7aa52 261 oneminusfractby2 = 1.0f - fractby2;
emilmont 1:fdd22bb7aa52 262 wb = fractsqby2 - fractby3;
emilmont 1:fdd22bb7aa52 263 wc = (fractsqby2 + fract);
emilmont 1:fdd22bb7aa52 264 wa = wb - frby6xfrsq;
emilmont 1:fdd22bb7aa52 265 wb = frby2xfrsq - fractsq;
emilmont 1:fdd22bb7aa52 266 sinVal = wa * a;
emilmont 1:fdd22bb7aa52 267 wc = wc - frby2xfrsq;
emilmont 1:fdd22bb7aa52 268 wd = (frby6xfrsq) - fractby6;
emilmont 1:fdd22bb7aa52 269 wb = wb + oneminusfractby2;
emilmont 1:fdd22bb7aa52 270
emilmont 1:fdd22bb7aa52 271 /* Calculate sin value */
emilmont 1:fdd22bb7aa52 272 sinVal = (sinVal + (b * wb)) + ((c * wc) + (d * wd));
emilmont 1:fdd22bb7aa52 273
emilmont 1:fdd22bb7aa52 274 /* Return the output value */
emilmont 1:fdd22bb7aa52 275 return (sinVal);
emilmont 1:fdd22bb7aa52 276
emilmont 1:fdd22bb7aa52 277 }
emilmont 1:fdd22bb7aa52 278
emilmont 1:fdd22bb7aa52 279 /**
emilmont 1:fdd22bb7aa52 280 * @} end of sin group
emilmont 1:fdd22bb7aa52 281 */