Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Committer:
emilmont
Date:
Thu May 30 17:10:11 2013 +0100
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce
Keep "cmsis-dsp" module in synch with its source

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
emilmont 1:fdd22bb7aa52 2 * Copyright (C) 2010 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
emilmont 1:fdd22bb7aa52 4 * $Date: 15. February 2012
emilmont 2:da51fb522205 5 * $Revision: V1.1.0
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_cmplx_mag_f32.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Floating-point complex magnitude.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
emilmont 1:fdd22bb7aa52 14 * Version 1.1.0 2012/02/15
emilmont 1:fdd22bb7aa52 15 * Updated with more optimizations, bug fixes and minor API changes.
emilmont 1:fdd22bb7aa52 16 *
emilmont 1:fdd22bb7aa52 17 * Version 1.0.10 2011/7/15
emilmont 1:fdd22bb7aa52 18 * Big Endian support added and Merged M0 and M3/M4 Source code.
emilmont 1:fdd22bb7aa52 19 *
emilmont 1:fdd22bb7aa52 20 * Version 1.0.3 2010/11/29
emilmont 1:fdd22bb7aa52 21 * Re-organized the CMSIS folders and updated documentation.
emilmont 1:fdd22bb7aa52 22 *
emilmont 1:fdd22bb7aa52 23 * Version 1.0.2 2010/11/11
emilmont 1:fdd22bb7aa52 24 * Documentation updated.
emilmont 1:fdd22bb7aa52 25 *
emilmont 1:fdd22bb7aa52 26 * Version 1.0.1 2010/10/05
emilmont 1:fdd22bb7aa52 27 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 28 *
emilmont 1:fdd22bb7aa52 29 * Version 1.0.0 2010/09/20
emilmont 1:fdd22bb7aa52 30 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 31 * ---------------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 32
emilmont 1:fdd22bb7aa52 33 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 34
emilmont 1:fdd22bb7aa52 35 /**
emilmont 1:fdd22bb7aa52 36 * @ingroup groupCmplxMath
emilmont 1:fdd22bb7aa52 37 */
emilmont 1:fdd22bb7aa52 38
emilmont 1:fdd22bb7aa52 39 /**
emilmont 1:fdd22bb7aa52 40 * @defgroup cmplx_mag Complex Magnitude
emilmont 1:fdd22bb7aa52 41 *
emilmont 1:fdd22bb7aa52 42 * Computes the magnitude of the elements of a complex data vector.
emilmont 1:fdd22bb7aa52 43 *
emilmont 1:fdd22bb7aa52 44 * The <code>pSrc</code> points to the source data and
emilmont 1:fdd22bb7aa52 45 * <code>pDst</code> points to the where the result should be written.
emilmont 1:fdd22bb7aa52 46 * <code>numSamples</code> specifies the number of complex samples
emilmont 1:fdd22bb7aa52 47 * in the input array and the data is stored in an interleaved fashion
emilmont 1:fdd22bb7aa52 48 * (real, imag, real, imag, ...).
emilmont 1:fdd22bb7aa52 49 * The input array has a total of <code>2*numSamples</code> values;
emilmont 1:fdd22bb7aa52 50 * the output array has a total of <code>numSamples</code> values.
emilmont 1:fdd22bb7aa52 51 * The underlying algorithm is used:
emilmont 1:fdd22bb7aa52 52 *
emilmont 1:fdd22bb7aa52 53 * <pre>
emilmont 1:fdd22bb7aa52 54 * for(n=0; n<numSamples; n++) {
emilmont 1:fdd22bb7aa52 55 * pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
emilmont 1:fdd22bb7aa52 56 * }
emilmont 1:fdd22bb7aa52 57 * </pre>
emilmont 1:fdd22bb7aa52 58 *
emilmont 1:fdd22bb7aa52 59 * There are separate functions for floating-point, Q15, and Q31 data types.
emilmont 1:fdd22bb7aa52 60 */
emilmont 1:fdd22bb7aa52 61
emilmont 1:fdd22bb7aa52 62 /**
emilmont 1:fdd22bb7aa52 63 * @addtogroup cmplx_mag
emilmont 1:fdd22bb7aa52 64 * @{
emilmont 1:fdd22bb7aa52 65 */
emilmont 1:fdd22bb7aa52 66 /**
emilmont 1:fdd22bb7aa52 67 * @brief Floating-point complex magnitude.
emilmont 1:fdd22bb7aa52 68 * @param[in] *pSrc points to complex input buffer
emilmont 1:fdd22bb7aa52 69 * @param[out] *pDst points to real output buffer
emilmont 1:fdd22bb7aa52 70 * @param[in] numSamples number of complex samples in the input vector
emilmont 1:fdd22bb7aa52 71 * @return none.
emilmont 1:fdd22bb7aa52 72 *
emilmont 1:fdd22bb7aa52 73 */
emilmont 1:fdd22bb7aa52 74
emilmont 1:fdd22bb7aa52 75
emilmont 1:fdd22bb7aa52 76 void arm_cmplx_mag_f32(
emilmont 1:fdd22bb7aa52 77 float32_t * pSrc,
emilmont 1:fdd22bb7aa52 78 float32_t * pDst,
emilmont 1:fdd22bb7aa52 79 uint32_t numSamples)
emilmont 1:fdd22bb7aa52 80 {
emilmont 1:fdd22bb7aa52 81 float32_t realIn, imagIn; /* Temporary variables to hold input values */
emilmont 1:fdd22bb7aa52 82
emilmont 1:fdd22bb7aa52 83 #ifndef ARM_MATH_CM0
emilmont 1:fdd22bb7aa52 84
emilmont 1:fdd22bb7aa52 85 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 86 uint32_t blkCnt; /* loop counter */
emilmont 1:fdd22bb7aa52 87
emilmont 1:fdd22bb7aa52 88 /*loop Unrolling */
emilmont 1:fdd22bb7aa52 89 blkCnt = numSamples >> 2u;
emilmont 1:fdd22bb7aa52 90
emilmont 1:fdd22bb7aa52 91 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
emilmont 1:fdd22bb7aa52 92 ** a second loop below computes the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 93 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 94 {
emilmont 1:fdd22bb7aa52 95
emilmont 1:fdd22bb7aa52 96 /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
emilmont 1:fdd22bb7aa52 97 realIn = *pSrc++;
emilmont 1:fdd22bb7aa52 98 imagIn = *pSrc++;
emilmont 1:fdd22bb7aa52 99 /* store the result in the destination buffer. */
emilmont 1:fdd22bb7aa52 100 arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
emilmont 1:fdd22bb7aa52 101
emilmont 1:fdd22bb7aa52 102 realIn = *pSrc++;
emilmont 1:fdd22bb7aa52 103 imagIn = *pSrc++;
emilmont 1:fdd22bb7aa52 104 arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
emilmont 1:fdd22bb7aa52 105
emilmont 1:fdd22bb7aa52 106 realIn = *pSrc++;
emilmont 1:fdd22bb7aa52 107 imagIn = *pSrc++;
emilmont 1:fdd22bb7aa52 108 arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
emilmont 1:fdd22bb7aa52 109
emilmont 1:fdd22bb7aa52 110 realIn = *pSrc++;
emilmont 1:fdd22bb7aa52 111 imagIn = *pSrc++;
emilmont 1:fdd22bb7aa52 112 arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
emilmont 1:fdd22bb7aa52 113
emilmont 1:fdd22bb7aa52 114
emilmont 1:fdd22bb7aa52 115 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 116 blkCnt--;
emilmont 1:fdd22bb7aa52 117 }
emilmont 1:fdd22bb7aa52 118
emilmont 1:fdd22bb7aa52 119 /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 120 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 121 blkCnt = numSamples % 0x4u;
emilmont 1:fdd22bb7aa52 122
emilmont 1:fdd22bb7aa52 123 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 124 {
emilmont 1:fdd22bb7aa52 125 /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
emilmont 1:fdd22bb7aa52 126 realIn = *pSrc++;
emilmont 1:fdd22bb7aa52 127 imagIn = *pSrc++;
emilmont 1:fdd22bb7aa52 128 /* store the result in the destination buffer. */
emilmont 1:fdd22bb7aa52 129 arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
emilmont 1:fdd22bb7aa52 130
emilmont 1:fdd22bb7aa52 131 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 132 blkCnt--;
emilmont 1:fdd22bb7aa52 133 }
emilmont 1:fdd22bb7aa52 134
emilmont 1:fdd22bb7aa52 135 #else
emilmont 1:fdd22bb7aa52 136
emilmont 1:fdd22bb7aa52 137 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 138
emilmont 1:fdd22bb7aa52 139 while(numSamples > 0u)
emilmont 1:fdd22bb7aa52 140 {
emilmont 1:fdd22bb7aa52 141 /* out = sqrt((real * real) + (imag * imag)) */
emilmont 1:fdd22bb7aa52 142 realIn = *pSrc++;
emilmont 1:fdd22bb7aa52 143 imagIn = *pSrc++;
emilmont 1:fdd22bb7aa52 144 /* store the result in the destination buffer. */
emilmont 1:fdd22bb7aa52 145 arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
emilmont 1:fdd22bb7aa52 146
emilmont 1:fdd22bb7aa52 147 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 148 numSamples--;
emilmont 1:fdd22bb7aa52 149 }
emilmont 1:fdd22bb7aa52 150
emilmont 1:fdd22bb7aa52 151 #endif /* #ifndef ARM_MATH_CM0 */
emilmont 1:fdd22bb7aa52 152
emilmont 1:fdd22bb7aa52 153 }
emilmont 1:fdd22bb7aa52 154
emilmont 1:fdd22bb7aa52 155 /**
emilmont 1:fdd22bb7aa52 156 * @} end of cmplx_mag group
emilmont 1:fdd22bb7aa52 157 */