Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


Committer:
mbed_official
Date:
Fri Nov 08 13:45:10 2013 +0000
Revision:
3:7a284390b0ce
Parent:
2:da51fb522205
Synchronized with git revision e69956aba2f68a2a26ac26b051f8d349deaa1ce8

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
mbed_official 3:7a284390b0ce 2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 3:7a284390b0ce 4 * $Date: 17. January 2013
mbed_official 3:7a284390b0ce 5 * $Revision: V1.4.1
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_mat_mult_f32.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 1:fdd22bb7aa52 10 * Description: Floating-point matrix multiplication.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
mbed_official 3:7a284390b0ce 14 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 15 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 16 * are met:
mbed_official 3:7a284390b0ce 17 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 18 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 19 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 20 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 21 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 22 * distribution.
mbed_official 3:7a284390b0ce 23 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 24 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 25 * software without specific prior written permission.
mbed_official 3:7a284390b0ce 26 *
mbed_official 3:7a284390b0ce 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 38 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 39 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 40
emilmont 1:fdd22bb7aa52 41 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 42
emilmont 1:fdd22bb7aa52 43 /**
emilmont 1:fdd22bb7aa52 44 * @ingroup groupMatrix
emilmont 1:fdd22bb7aa52 45 */
emilmont 1:fdd22bb7aa52 46
emilmont 1:fdd22bb7aa52 47 /**
emilmont 1:fdd22bb7aa52 48 * @defgroup MatrixMult Matrix Multiplication
emilmont 1:fdd22bb7aa52 49 *
emilmont 1:fdd22bb7aa52 50 * Multiplies two matrices.
emilmont 1:fdd22bb7aa52 51 *
emilmont 1:fdd22bb7aa52 52 * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
emilmont 1:fdd22bb7aa52 53
emilmont 1:fdd22bb7aa52 54 * Matrix multiplication is only defined if the number of columns of the
emilmont 1:fdd22bb7aa52 55 * first matrix equals the number of rows of the second matrix.
emilmont 1:fdd22bb7aa52 56 * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
emilmont 1:fdd22bb7aa52 57 * in an <code>M x P</code> matrix.
emilmont 1:fdd22bb7aa52 58 * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
emilmont 1:fdd22bb7aa52 59 * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
emilmont 1:fdd22bb7aa52 60 * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
emilmont 1:fdd22bb7aa52 61 */
emilmont 1:fdd22bb7aa52 62
emilmont 1:fdd22bb7aa52 63
emilmont 1:fdd22bb7aa52 64 /**
emilmont 1:fdd22bb7aa52 65 * @addtogroup MatrixMult
emilmont 1:fdd22bb7aa52 66 * @{
emilmont 1:fdd22bb7aa52 67 */
emilmont 1:fdd22bb7aa52 68
emilmont 1:fdd22bb7aa52 69 /**
emilmont 1:fdd22bb7aa52 70 * @brief Floating-point matrix multiplication.
emilmont 1:fdd22bb7aa52 71 * @param[in] *pSrcA points to the first input matrix structure
emilmont 1:fdd22bb7aa52 72 * @param[in] *pSrcB points to the second input matrix structure
emilmont 1:fdd22bb7aa52 73 * @param[out] *pDst points to output matrix structure
emilmont 2:da51fb522205 74 * @return The function returns either
emilmont 1:fdd22bb7aa52 75 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
emilmont 1:fdd22bb7aa52 76 */
emilmont 1:fdd22bb7aa52 77
emilmont 1:fdd22bb7aa52 78 arm_status arm_mat_mult_f32(
emilmont 1:fdd22bb7aa52 79 const arm_matrix_instance_f32 * pSrcA,
emilmont 1:fdd22bb7aa52 80 const arm_matrix_instance_f32 * pSrcB,
emilmont 1:fdd22bb7aa52 81 arm_matrix_instance_f32 * pDst)
emilmont 1:fdd22bb7aa52 82 {
emilmont 1:fdd22bb7aa52 83 float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
emilmont 1:fdd22bb7aa52 84 float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
emilmont 1:fdd22bb7aa52 85 float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
emilmont 1:fdd22bb7aa52 86 float32_t *pOut = pDst->pData; /* output data matrix pointer */
emilmont 1:fdd22bb7aa52 87 float32_t *px; /* Temporary output data matrix pointer */
emilmont 1:fdd22bb7aa52 88 float32_t sum; /* Accumulator */
emilmont 1:fdd22bb7aa52 89 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
emilmont 1:fdd22bb7aa52 90 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
emilmont 1:fdd22bb7aa52 91 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
emilmont 1:fdd22bb7aa52 92
mbed_official 3:7a284390b0ce 93 #ifndef ARM_MATH_CM0_FAMILY
emilmont 1:fdd22bb7aa52 94
emilmont 1:fdd22bb7aa52 95 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 96
emilmont 1:fdd22bb7aa52 97 float32_t in1, in2, in3, in4;
emilmont 1:fdd22bb7aa52 98 uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */
emilmont 1:fdd22bb7aa52 99 arm_status status; /* status of matrix multiplication */
emilmont 1:fdd22bb7aa52 100
emilmont 1:fdd22bb7aa52 101 #ifdef ARM_MATH_MATRIX_CHECK
emilmont 1:fdd22bb7aa52 102
emilmont 1:fdd22bb7aa52 103
emilmont 1:fdd22bb7aa52 104 /* Check for matrix mismatch condition */
emilmont 1:fdd22bb7aa52 105 if((pSrcA->numCols != pSrcB->numRows) ||
emilmont 1:fdd22bb7aa52 106 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
emilmont 1:fdd22bb7aa52 107 {
emilmont 1:fdd22bb7aa52 108
emilmont 1:fdd22bb7aa52 109 /* Set status as ARM_MATH_SIZE_MISMATCH */
emilmont 1:fdd22bb7aa52 110 status = ARM_MATH_SIZE_MISMATCH;
emilmont 1:fdd22bb7aa52 111 }
emilmont 1:fdd22bb7aa52 112 else
emilmont 1:fdd22bb7aa52 113 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
emilmont 1:fdd22bb7aa52 114
emilmont 1:fdd22bb7aa52 115 {
emilmont 1:fdd22bb7aa52 116 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
emilmont 1:fdd22bb7aa52 117 /* row loop */
emilmont 1:fdd22bb7aa52 118 do
emilmont 1:fdd22bb7aa52 119 {
emilmont 1:fdd22bb7aa52 120 /* Output pointer is set to starting address of the row being processed */
emilmont 1:fdd22bb7aa52 121 px = pOut + i;
emilmont 1:fdd22bb7aa52 122
emilmont 1:fdd22bb7aa52 123 /* For every row wise process, the column loop counter is to be initiated */
emilmont 1:fdd22bb7aa52 124 col = numColsB;
emilmont 1:fdd22bb7aa52 125
emilmont 1:fdd22bb7aa52 126 /* For every row wise process, the pIn2 pointer is set
emilmont 1:fdd22bb7aa52 127 ** to the starting address of the pSrcB data */
emilmont 1:fdd22bb7aa52 128 pIn2 = pSrcB->pData;
emilmont 1:fdd22bb7aa52 129
emilmont 1:fdd22bb7aa52 130 j = 0u;
emilmont 1:fdd22bb7aa52 131
emilmont 1:fdd22bb7aa52 132 /* column loop */
emilmont 1:fdd22bb7aa52 133 do
emilmont 1:fdd22bb7aa52 134 {
emilmont 1:fdd22bb7aa52 135 /* Set the variable sum, that acts as accumulator, to zero */
emilmont 1:fdd22bb7aa52 136 sum = 0.0f;
emilmont 1:fdd22bb7aa52 137
emilmont 1:fdd22bb7aa52 138 /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
emilmont 1:fdd22bb7aa52 139 pIn1 = pInA;
emilmont 1:fdd22bb7aa52 140
emilmont 1:fdd22bb7aa52 141 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 142 colCnt = numColsA >> 2u;
emilmont 1:fdd22bb7aa52 143
emilmont 1:fdd22bb7aa52 144 /* matrix multiplication */
emilmont 1:fdd22bb7aa52 145 while(colCnt > 0u)
emilmont 1:fdd22bb7aa52 146 {
emilmont 1:fdd22bb7aa52 147 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
emilmont 1:fdd22bb7aa52 148 in3 = *pIn2;
emilmont 1:fdd22bb7aa52 149 pIn2 += numColsB;
emilmont 1:fdd22bb7aa52 150 in1 = pIn1[0];
emilmont 1:fdd22bb7aa52 151 in2 = pIn1[1];
emilmont 1:fdd22bb7aa52 152 sum += in1 * in3;
emilmont 1:fdd22bb7aa52 153 in4 = *pIn2;
emilmont 1:fdd22bb7aa52 154 pIn2 += numColsB;
emilmont 1:fdd22bb7aa52 155 sum += in2 * in4;
emilmont 1:fdd22bb7aa52 156
emilmont 1:fdd22bb7aa52 157 in3 = *pIn2;
emilmont 1:fdd22bb7aa52 158 pIn2 += numColsB;
emilmont 1:fdd22bb7aa52 159 in1 = pIn1[2];
emilmont 1:fdd22bb7aa52 160 in2 = pIn1[3];
emilmont 1:fdd22bb7aa52 161 sum += in1 * in3;
emilmont 1:fdd22bb7aa52 162 in4 = *pIn2;
emilmont 1:fdd22bb7aa52 163 pIn2 += numColsB;
emilmont 1:fdd22bb7aa52 164 sum += in2 * in4;
emilmont 1:fdd22bb7aa52 165 pIn1 += 4u;
emilmont 1:fdd22bb7aa52 166
emilmont 1:fdd22bb7aa52 167 /* Decrement the loop count */
emilmont 1:fdd22bb7aa52 168 colCnt--;
emilmont 1:fdd22bb7aa52 169 }
emilmont 1:fdd22bb7aa52 170
emilmont 1:fdd22bb7aa52 171 /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 172 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 173 colCnt = numColsA % 0x4u;
emilmont 1:fdd22bb7aa52 174
emilmont 1:fdd22bb7aa52 175 while(colCnt > 0u)
emilmont 1:fdd22bb7aa52 176 {
emilmont 1:fdd22bb7aa52 177 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
emilmont 1:fdd22bb7aa52 178 sum += *pIn1++ * (*pIn2);
emilmont 1:fdd22bb7aa52 179 pIn2 += numColsB;
emilmont 1:fdd22bb7aa52 180
emilmont 1:fdd22bb7aa52 181 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 182 colCnt--;
emilmont 1:fdd22bb7aa52 183 }
emilmont 1:fdd22bb7aa52 184
emilmont 1:fdd22bb7aa52 185 /* Store the result in the destination buffer */
emilmont 1:fdd22bb7aa52 186 *px++ = sum;
emilmont 1:fdd22bb7aa52 187
emilmont 1:fdd22bb7aa52 188 /* Update the pointer pIn2 to point to the starting address of the next column */
emilmont 1:fdd22bb7aa52 189 j++;
emilmont 1:fdd22bb7aa52 190 pIn2 = pSrcB->pData + j;
emilmont 1:fdd22bb7aa52 191
emilmont 1:fdd22bb7aa52 192 /* Decrement the column loop counter */
emilmont 1:fdd22bb7aa52 193 col--;
emilmont 1:fdd22bb7aa52 194
emilmont 1:fdd22bb7aa52 195 } while(col > 0u);
emilmont 1:fdd22bb7aa52 196
emilmont 1:fdd22bb7aa52 197 #else
emilmont 1:fdd22bb7aa52 198
emilmont 1:fdd22bb7aa52 199 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 200
emilmont 1:fdd22bb7aa52 201 float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
emilmont 1:fdd22bb7aa52 202 uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */
emilmont 1:fdd22bb7aa52 203 arm_status status; /* status of matrix multiplication */
emilmont 1:fdd22bb7aa52 204
emilmont 1:fdd22bb7aa52 205 #ifdef ARM_MATH_MATRIX_CHECK
emilmont 1:fdd22bb7aa52 206
emilmont 1:fdd22bb7aa52 207 /* Check for matrix mismatch condition */
emilmont 1:fdd22bb7aa52 208 if((pSrcA->numCols != pSrcB->numRows) ||
emilmont 1:fdd22bb7aa52 209 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
emilmont 1:fdd22bb7aa52 210 {
emilmont 1:fdd22bb7aa52 211
emilmont 1:fdd22bb7aa52 212 /* Set status as ARM_MATH_SIZE_MISMATCH */
emilmont 1:fdd22bb7aa52 213 status = ARM_MATH_SIZE_MISMATCH;
emilmont 1:fdd22bb7aa52 214 }
emilmont 1:fdd22bb7aa52 215 else
emilmont 1:fdd22bb7aa52 216 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
emilmont 1:fdd22bb7aa52 217
emilmont 1:fdd22bb7aa52 218 {
emilmont 1:fdd22bb7aa52 219 /* The following loop performs the dot-product of each row in pInA with each column in pInB */
emilmont 1:fdd22bb7aa52 220 /* row loop */
emilmont 1:fdd22bb7aa52 221 do
emilmont 1:fdd22bb7aa52 222 {
emilmont 1:fdd22bb7aa52 223 /* Output pointer is set to starting address of the row being processed */
emilmont 1:fdd22bb7aa52 224 px = pOut + i;
emilmont 1:fdd22bb7aa52 225
emilmont 1:fdd22bb7aa52 226 /* For every row wise process, the column loop counter is to be initiated */
emilmont 1:fdd22bb7aa52 227 col = numColsB;
emilmont 1:fdd22bb7aa52 228
emilmont 1:fdd22bb7aa52 229 /* For every row wise process, the pIn2 pointer is set
emilmont 1:fdd22bb7aa52 230 ** to the starting address of the pSrcB data */
emilmont 1:fdd22bb7aa52 231 pIn2 = pSrcB->pData;
emilmont 1:fdd22bb7aa52 232
emilmont 1:fdd22bb7aa52 233 /* column loop */
emilmont 1:fdd22bb7aa52 234 do
emilmont 1:fdd22bb7aa52 235 {
emilmont 1:fdd22bb7aa52 236 /* Set the variable sum, that acts as accumulator, to zero */
emilmont 1:fdd22bb7aa52 237 sum = 0.0f;
emilmont 1:fdd22bb7aa52 238
emilmont 1:fdd22bb7aa52 239 /* Initialize the pointer pIn1 to point to the starting address of the row being processed */
emilmont 1:fdd22bb7aa52 240 pIn1 = pInA;
emilmont 1:fdd22bb7aa52 241
emilmont 1:fdd22bb7aa52 242 /* Matrix A columns number of MAC operations are to be performed */
emilmont 1:fdd22bb7aa52 243 colCnt = numColsA;
emilmont 1:fdd22bb7aa52 244
emilmont 1:fdd22bb7aa52 245 while(colCnt > 0u)
emilmont 1:fdd22bb7aa52 246 {
emilmont 1:fdd22bb7aa52 247 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
emilmont 1:fdd22bb7aa52 248 sum += *pIn1++ * (*pIn2);
emilmont 1:fdd22bb7aa52 249 pIn2 += numColsB;
emilmont 1:fdd22bb7aa52 250
emilmont 1:fdd22bb7aa52 251 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 252 colCnt--;
emilmont 1:fdd22bb7aa52 253 }
emilmont 1:fdd22bb7aa52 254
emilmont 1:fdd22bb7aa52 255 /* Store the result in the destination buffer */
emilmont 1:fdd22bb7aa52 256 *px++ = sum;
emilmont 1:fdd22bb7aa52 257
emilmont 1:fdd22bb7aa52 258 /* Decrement the column loop counter */
emilmont 1:fdd22bb7aa52 259 col--;
emilmont 1:fdd22bb7aa52 260
emilmont 1:fdd22bb7aa52 261 /* Update the pointer pIn2 to point to the starting address of the next column */
emilmont 1:fdd22bb7aa52 262 pIn2 = pInB + (numColsB - col);
emilmont 1:fdd22bb7aa52 263
emilmont 1:fdd22bb7aa52 264 } while(col > 0u);
emilmont 1:fdd22bb7aa52 265
mbed_official 3:7a284390b0ce 266 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emilmont 1:fdd22bb7aa52 267
emilmont 1:fdd22bb7aa52 268 /* Update the pointer pInA to point to the starting address of the next row */
emilmont 1:fdd22bb7aa52 269 i = i + numColsB;
emilmont 1:fdd22bb7aa52 270 pInA = pInA + numColsA;
emilmont 1:fdd22bb7aa52 271
emilmont 1:fdd22bb7aa52 272 /* Decrement the row loop counter */
emilmont 1:fdd22bb7aa52 273 row--;
emilmont 1:fdd22bb7aa52 274
emilmont 1:fdd22bb7aa52 275 } while(row > 0u);
emilmont 1:fdd22bb7aa52 276 /* Set status as ARM_MATH_SUCCESS */
emilmont 1:fdd22bb7aa52 277 status = ARM_MATH_SUCCESS;
emilmont 1:fdd22bb7aa52 278 }
emilmont 1:fdd22bb7aa52 279
emilmont 1:fdd22bb7aa52 280 /* Return to application */
emilmont 1:fdd22bb7aa52 281 return (status);
emilmont 1:fdd22bb7aa52 282 }
emilmont 1:fdd22bb7aa52 283
emilmont 1:fdd22bb7aa52 284 /**
emilmont 1:fdd22bb7aa52 285 * @} end of MatrixMult group
emilmont 1:fdd22bb7aa52 286 */