This is a mbed Client sample where ZXing is incorporated, and works on GR-PEACH and GR-LYCHEE.

Dependencies:   DisplayApp AsciiFont

Overview

This sample program shows how to use mbed Client together with ZXing which is an open-source, multi-format 1D/2D barcode image processing library. For more info on ZXing, please refer to https://github.com/zxing/zxing.

Required hardware

Application setup

  1. Select the connection type. For details, please refer to the following wiki:
    https://os.mbed.com/teams/Renesas/code/GR-PEACH_mbed-os-client-ZXingSample/wiki/Connection-type.
  2. Set the client credentials. For details, please refer to the following wiki:
    https://os.mbed.com/teams/Renesas/code/GR-PEACH_mbed-os-client-ZXingSample/wiki/Client-credentials.
  3. Change Ethernet settings. For details, please refer to the following wiki:
    https://developer.mbed.org/teams/Renesas/code/GR-PEACH_mbed-os-client-ZXingSample/wiki/Ethernet-settings.
  4. Change Wifi settings. For details, please refer to the following wiki:
    https://os.mbed.com/teams/Renesas/code/GR-PEACH_mbed-os-client-ZXingSample/wiki/Wifi-settings.
  5. Set up an IP address. (This step is optional.) For details, please refer to the following wiki:
    https://os.mbed.com/teams/Renesas/code/GR-PEACH_mbed-os-client-ZXingSample/wiki/IP-address-setup.

Building the example

To build this example:

  1. Import this example onto mbed Compiler.
  2. Configure the example in accordance with Application setup.
  3. Compile the example on mbed Compiler and download the resultant binary file.
  4. Plug the Ethernet cable into GR-PEACH or GR-LYCHEE if you are using Ethernet mode.
  5. Plug the micro-USB cable into the OpenSDA port which lies on the next to the RESET button.
  6. Copy the binary previously downloaded to your PC to GR-PEACH or GR-LYCHEE to flash this example. When the copy is successfully completed, the board is ready to work.
  7. Press the RESET button on the board to run the example.
  8. For verification, please refer to the following wiki:
    https://developer.mbed.org/teams/Renesas/code/GR-PEACH_mbed-os-client-ZXingSample/wiki/Monitoring-the-application.

Application resources

This example exposes four resources listed below:

  1. 3202/0/5700. Decode result of barcode data input from camera (GET).
  2. 3201/0/5850. Blink function, blinks LED when executed (POST).
  3. 3201/0/5853. Blink pattern, used by the blink function to determine how to blink. In the format of 1000:500:1000:500:1000:500 (PUT).
  4. 3201/0/5855. Blink color, used by the blink function. Any of red, green, blue, cyan, yellow and magenta is acceptable if you are using GR-PEACH board (PUT).
  5. 3201/0/5855. Blink color, used by the blink function. Any of green, yellow, orange and red is acceptable if you are using GR-LYCHEE board (PUT).

For more info on how to get notifications when resource 1 changes, or how to use resource 2, 3 and 4, please look at

Import programGR-PEACH_mbed-connector-ZXingSample-node

Node.js based Web Application for mbed Device Connector specific to GR-PEACH_mbed-os-client-ZXingSample

Revision:
6:ea24d9271ff1
Parent:
2:6ec5c1c1d41c
--- a/README.md	Mon Apr 17 05:28:29 2017 +0000
+++ b/README.md	Thu Dec 13 08:28:47 2018 +0000
@@ -40,7 +40,6 @@
 1. [Change Ethernet settings](#ethernet-settings).
 1. [Change Wi-Fi settings](#wi-fi-settings).
 1. [Set up an IP address](#ip-address-setup). This step is optional.
-1. [Change the socket type](#changing-socket-type). This step is optional.
 
 ### Connection type
 
@@ -80,72 +79,12 @@
 }
 ```
 
-### Wi-Fi settings (BP3595)
-
-The example application uses BP3595 WiFi Interface for managing the wireless connectivity. To run this application using WiFi, you need:
-
-1. An [BP3595](https://developer.mbed.org/components/BP3595-for-GR-PEACH/) WiFi module
-1. Mount the WiFi module onto [Renesas GR-PEACH](https://developer.mbed.org/platforms/Renesas-GR-PEACH/)
-1. In the `mbed_app.json` file, change
-```json
-    "network-interface":{
-        "help": "Options are ETHERNET, WIFI_ESP8266, WIFI_BP3595, NO_CONNECT",
-        "value": "WIFI_BP3595"
-    },
-```
-
-Provide your WiFi SSID and password here and leave `\"` in the beginning and end of your SSID and password (as shown in the example below). Otherwise, the example cannot pick up the SSID and password in correct format.
-```json
-    "wifi-ssid": {
-        "help": "WiFi SSID",
-        "value": "\"SSID\""
-    },
-    "wifi-password": {
-        "help": "WiFi Password",
-        "value": "\"Password\""
-    }
-```
-
-Specify the security protocol in accordance with your wireless network. By default, NSAPI_SECURITY_WPA_WPA2 is specified. That means WPA and WPA2 are available. If you would like to use WEP instead of WPA2, please specify NSAPI_SECURITY_WEP here.
-```json
-    "wifi-security": {
-        "help": "Options are NSAPI_SECURITY_WEP, NSAPI_SECURITY_WPA, NSAPI_SECURITY_WPA2, NSAPI_SECURITY_WPA_WPA2",
-        "value": "NSAPI_SECURITY_WPA_WPA2"
-    }
-```
-
-Short the jumper JP1 of [Audio Camera Shield](https://developer.mbed.org/teams/Renesas/wiki/Audio_Camera-shield) to supply the power to BP3595.
-
-<span class="tips">**TODO:** Need to clarify when Audio Camera Shield is NOT available.</span>
-
 ### IP address setup
 
 This example uses IPv4 to communicate with the [mbed Device Connector Server](https://api.connector.mbed.com) except for 6LoWPAN ND and Thread. 
 The example program should automatically get an IP address from the router when connected over Ethernet or WiFi.
 If your network does not have DHCP enabled, you have to manually assign a static IP address to the board. We recommend having DHCP enabled to make everything run smoothly.
 
-### Changing socket type
-
-Your device can connect to mbed Device Connector via UDP or TCP binding mode. The default and only allowed value is UDP for Thread and 6LoWPAN. TCP is the default for other connections. The binding mode cannot be changed in 6LoWPAN ND or Thread mode.
-
-To change the binding mode:
-
-1. In the `simpleclient.h` file, find the parameter `SOCKET_MODE`. The default is `M2MInterface::UDP` for mesh and `M2MInterface::TCP` for others.
-1. To switch to UDP, change it to `M2MInterface::UDP`.
-1. Rebuild and flash the application.
-
-<span class="tips">**Tip:** The instructions in this document remain the same, irrespective of the socket mode you select.</span>
-
-Possible socket types per connection:
-
-| Network  interface                    | UDP   | TCP | 
-| ------------------------------|:-----:|:-----:|
-| Ethernet (IPv4)               |   X   |   X   | 
-| Ethernet (IPv6)               |   X   |       | 
-| Wifi (IPv4)                   |   X   |   X   |
-| Wifi (IPv6) - Not supported   |       |       |
-| 6LoWPAN/Thread (IPv6)         |   X   |       |
-
 ## Building the example
 
 To build the example using mbed CLI:
@@ -170,7 +109,7 @@
 
 5. Plug the micro-USB cable into the **OpenSDA** port. The board is listed as a mass-storage device.
 
-6. Drag the binary `BUILD/RZ_A1H/GCC_ARM/GR-PEACH_mbed-os-client-ZXingSample.bin` to the board to flash the application.
+6. Drag the binary `BUILD/RZ_A1H/GCC_ARM/XXXXXXXX.bin` to the board to flash the application.
 
 7. The board is automatically programmed with the new binary. A flashing LED on it indicates that it is still working. When the LED stops blinking, the board is ready to work.
 
@@ -186,17 +125,16 @@
 
 
 ```
-Starting mbed Client example in IPv4 mode
+Starting mbed Client example
 [EasyConnect] Using Ethernet
 [EasyConnect] Connected to Network successfully
-[EasyConnect] IP address  192.168.8.110
-[EasyConnect] MAC address 5c:cf:7f:86:de:bf
+[EasyConnect] IP address xxx.xxx.xxx.xxx
+[EasyConnect] MAC address xx:xx:xx:xx:xx:xx
 
 SOCKET_MODE : TCP
-
 Connecting to coap://api.connector.mbed.com:5684
 
-Registered object succesfully!
+Registered object successfully!
 ```
 
 <span class="notes">**Note:** Device name is the endpoint name you will need later on when [testing the application](https://github.com/ARMmbed/mbed-os-example-client#testing-the-application) chapter.</span>
@@ -212,7 +150,6 @@
 1. Go to [Device Connector > API Console](https://connector.mbed.com/#console).
 1. Enter `https://api.connector.mbed.com/endpoints/DEVICE_NAME/3202/0/5700` in the URI field and click **TEST API**. Replace `DEVICE_NAME` with your actual endpoint name. The device name can be found in the `security.h` file, see variable `MBED_ENDPOINT_NAME` or it can be found from the traces [Monitoring the application](https://github.com/ARMmbed/mbed-os-example-client#monitoring-the-application).
 1. Decoded string is shown.
-1. Press the `SW3` button to unregister from mbed Device Connector. You should see `Unregistered Object Successfully` printed to the serial port and the LED starts blinking. This will also stop your application. Press the `RESET` button to run the program again.
 
 ![Decoded String, as shown by the API Console](zxing.png)