Sample program for communicating with Fujitsuu IoT Platform using HTTP

Dependencies:   AsciiFont GR-PEACH_video GraphicsFramework LCD_shield_config R_BSP USBHost_custom easy-connect-gr-peach mbed-http picojson BM1383GLV KX022 rohm-sensor-hal rohm-bh1745

Overview

This sample program shows how to send the cognitive data and sensing data gathered by Omron HVC-P2 and Rohm Sensor Shield respectively to IoT Platform managed by FUJITSU ( http://jp.fujitsu.com/solutions/cloud/k5/function/paas/iot-platform/ ).

Required Hardware

Application Setup

  1. Configure the connection type. For details, please refer to the following link:
    https://developer.mbed.org/teams/Renesas/code/GR-PEACH_IoT_Platform_HTTP_sample/wiki/Connection-Type
  2. Configure Ethernet settings. For details, please refer to the following link:
    https://developer.mbed.org/teams/Renesas/code/GR-PEACH_IoT_Platform_HTTP_sample/wiki/Ethernet-settings
  3. Set up the Access Code of resource where the gathered data would be stored. For details on Access Code, please refer to the following links:
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/userguide_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/apireference_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/portalmanual_en.pdf
  4. Set up URI for the resource where the gathered data would be stored. For details, please refer to the following link:
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/userguide_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/apireference_en.pdf

Building Example

  1. Import this sample program onto mbed Compiler
  2. Configure the program in accordance with the description of Application Setup above
  3. Compile the sample program
  4. Plug the Ethernet cable into GR-PEACH if you would like Ethernet mode
  5. Plug micro-USB cable into the OpenSDA port which lies on the next to the RESET button
  6. Copy the binary previously downloaded to your PC to GR-PEACH in order to flash this program. When the copy is successfully completed, the drive named MBED should be re-mounted automatically
  7. Press the RESET button on the board to run the sample application

Data Format sent to IoT Platform

In this sample program, the cognitive data and sensing data are serialized into the following JSON format using picojson (https://developer.mbed.org/users/mimil/code/picojson/):

  • Face detection data

{
    "RecordType": "HVC-P2(face)",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "Age": xxx,
    "FaceRectangle": {
        "Height": xxx,
        "Left": xxx,
        "Top": xxx,
        "Width": xxx
    },
    "Gender": xxx,
    "Scores": {
        "Anger": xxx,
        "Happiness": xxx,
        "Neutral": xxx,
        "Sadness": xxx,
        "Surprise": xxx
    }
}
  • Body detection data

{
    "RecodeType": "HVC-P2(body)",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "BodyRectangle": {
        "Height": xxx,
        "Left": xxx,
        "Top": xxx,
        "Width": xxx
    }
}
  • Accelerometer data

{
    "RecodeType": "Accelerometer",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ acceleratoin(x-direction), acceleration(y-direction), acceleration(z-direction), null, null, null ]
}

Note that data[0], data[1] and data[2] are filled with the acceleration data in x, y and z direction respectively, and the remaining elements are filled with null.

  • Atmosphere data

{
    "RecodeType": "Atmosphere",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ atmosphere data, null, null, null, null, null ]
}

Note that data[0] is filled with atmosphere data, and the remaining elements are filled with null.

  • Color sensor data

{
    "RecodeType": "Color",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ Red, Green, Blue, Alpha, null, null]
}

Note that data[0], data[1], data[2] and data[3] are filled with Red, Green, Blue and Alpha elements of color respectively, and the remaining elements are filled with null.

  • Temperature data

{
    "RecodeType": "Temperature",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ Temperature, null, null, null, null, null ]
}

Note that data[0] is filled with temperature data, the remaining elements are filled with null.

  • Geomagnetism

{
    "RecodeType": "Geomagnetism",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ geomagnetism(x-direction), geomagnetism(y-direction), geomagnetism(z-direction), null, null, null]
}

Note that data[0], data[1] and data[2] are filled with the geomagnetism data in x, y and z direction respectively, and the remaining elements are filled with null.

sensor_shield/BH1745NUC/BH1745NUC.h

Committer:
Osamu Nakamura
Date:
2018-04-12
Revision:
7:9ae73f85dc04
Parent:
0:8373b6833bde

File content as of revision 7:9ae73f85dc04:

/*****************************************************************************
  BH1745NUC.h

 Copyright (c) 2016 ROHM Co.,Ltd.

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE.
******************************************************************************/
#ifndef _BH1745NUC_H_
#define _BH1745NUC_H_

#define BH1745NUC_DEVICE_ADDRESS_38            (0x38)    // 7bit Addrss
#define BH1745NUC_DEVICE_ADDRESS_39            (0x39)    // 7bit Addrss
#define BH1745NUC_PART_ID_VAL                  (0x0B)
#define BH1745NUC_MANUFACT_ID_VAL              (0xE0)

#define BH1745NUC_SYSTEM_CONTROL               (0x40)
#define BH1745NUC_MODE_CONTROL1                (0x41)
#define BH1745NUC_MODE_CONTROL2                (0x42)
#define BH1745NUC_MODE_CONTROL3                (0x44)
#define BH1745NUC_RED_DATA_LSB                 (0x50)
#define BH1745NUC_MANUFACTURER_ID              (0x92)

#define BH1745NUC_MODE_CONTROL1_MEAS_TIME160MS (0x00)

#define BH1745NUC_MODE_CONTROL2_ADC_GAIN_X1    (0)
#define BH1745NUC_MODE_CONTROL2_ADC_GAIN_X2    (1)
#define BH1745NUC_MODE_CONTROL2_ADC_GAIN_X16   (2)
#define BH1745NUC_MODE_CONTROL2_RGBC_EN        (1 << 4)

#define BH1745NUC_MODE_CONTROL1_VAL            (BH1745NUC_MODE_CONTROL1_MEAS_TIME160MS)
#define BH1745NUC_MODE_CONTROL2_VAL            (BH1745NUC_MODE_CONTROL2_RGBC_EN | BH1745NUC_MODE_CONTROL2_ADC_GAIN_X16)
#define BH1745NUC_MODE_CONTROL3_VAL            (0x02)

class BH1745NUC
{
  public:
      BH1745NUC(int slave_address);
      unsigned char init(void) ;
      unsigned char get_rawval(unsigned char *data);
      unsigned char get_val(unsigned short *data);
      unsigned char write(unsigned char memory_address, unsigned char *data, unsigned char size);
      unsigned char read(unsigned char memory_address, unsigned char *data, int size);
  private:
      int _device_address;
};

#endif // _BH1745NUC_H_