Sample program for communicating with Fujitsuu IoT Platform using HTTP

Dependencies:   AsciiFont GR-PEACH_video GraphicsFramework LCD_shield_config R_BSP USBHost_custom easy-connect-gr-peach mbed-http picojson BM1383GLV KX022 rohm-sensor-hal rohm-bh1745

Overview

This sample program shows how to send the cognitive data and sensing data gathered by Omron HVC-P2 and Rohm Sensor Shield respectively to IoT Platform managed by FUJITSU ( http://jp.fujitsu.com/solutions/cloud/k5/function/paas/iot-platform/ ).

Required Hardware

Application Setup

  1. Configure the connection type. For details, please refer to the following link:
    https://developer.mbed.org/teams/Renesas/code/GR-PEACH_IoT_Platform_HTTP_sample/wiki/Connection-Type
  2. Configure Ethernet settings. For details, please refer to the following link:
    https://developer.mbed.org/teams/Renesas/code/GR-PEACH_IoT_Platform_HTTP_sample/wiki/Ethernet-settings
  3. Set up the Access Code of resource where the gathered data would be stored. For details on Access Code, please refer to the following links:
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/userguide_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/apireference_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/portalmanual_en.pdf
  4. Set up URI for the resource where the gathered data would be stored. For details, please refer to the following link:
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/userguide_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/apireference_en.pdf

Building Example

  1. Import this sample program onto mbed Compiler
  2. Configure the program in accordance with the description of Application Setup above
  3. Compile the sample program
  4. Plug the Ethernet cable into GR-PEACH if you would like Ethernet mode
  5. Plug micro-USB cable into the OpenSDA port which lies on the next to the RESET button
  6. Copy the binary previously downloaded to your PC to GR-PEACH in order to flash this program. When the copy is successfully completed, the drive named MBED should be re-mounted automatically
  7. Press the RESET button on the board to run the sample application

Data Format sent to IoT Platform

In this sample program, the cognitive data and sensing data are serialized into the following JSON format using picojson (https://developer.mbed.org/users/mimil/code/picojson/):

  • Face detection data

{
    "RecordType": "HVC-P2(face)",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "Age": xxx,
    "FaceRectangle": {
        "Height": xxx,
        "Left": xxx,
        "Top": xxx,
        "Width": xxx
    },
    "Gender": xxx,
    "Scores": {
        "Anger": xxx,
        "Happiness": xxx,
        "Neutral": xxx,
        "Sadness": xxx,
        "Surprise": xxx
    }
}
  • Body detection data

{
    "RecodeType": "HVC-P2(body)",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "BodyRectangle": {
        "Height": xxx,
        "Left": xxx,
        "Top": xxx,
        "Width": xxx
    }
}
  • Accelerometer data

{
    "RecodeType": "Accelerometer",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ acceleratoin(x-direction), acceleration(y-direction), acceleration(z-direction), null, null, null ]
}

Note that data[0], data[1] and data[2] are filled with the acceleration data in x, y and z direction respectively, and the remaining elements are filled with null.

  • Atmosphere data

{
    "RecodeType": "Atmosphere",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ atmosphere data, null, null, null, null, null ]
}

Note that data[0] is filled with atmosphere data, and the remaining elements are filled with null.

  • Color sensor data

{
    "RecodeType": "Color",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ Red, Green, Blue, Alpha, null, null]
}

Note that data[0], data[1], data[2] and data[3] are filled with Red, Green, Blue and Alpha elements of color respectively, and the remaining elements are filled with null.

  • Temperature data

{
    "RecodeType": "Temperature",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ Temperature, null, null, null, null, null ]
}

Note that data[0] is filled with temperature data, the remaining elements are filled with null.

  • Geomagnetism

{
    "RecodeType": "Geomagnetism",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ geomagnetism(x-direction), geomagnetism(y-direction), geomagnetism(z-direction), null, null, null]
}

Note that data[0], data[1] and data[2] are filled with the geomagnetism data in x, y and z direction respectively, and the remaining elements are filled with null.

NTPClient/NTPClient.cpp

Committer:
Osamu Nakamura
Date:
2018-04-12
Revision:
7:9ae73f85dc04
Parent:
0:8373b6833bde

File content as of revision 7:9ae73f85dc04:

/* NTPClient.cpp */
/* Copyright (C) 2012 mbed.org, MIT License
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
 * and associated documentation files (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge, publish, distribute,
 * sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all copies or
 * substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

//Debug is disabled by default
#if 0
//Enable debug
#define __DEBUG__
#include <cstdio>
#define DBG(x, ...) std::printf("[NTPClient : DBG]"x"\r\n", ##__VA_ARGS__); 
#define WARN(x, ...) std::printf("[NTPClient : WARN]"x"\r\n", ##__VA_ARGS__); 
#define ERR(x, ...) std::printf("[NTPClient : ERR]"x"\r\n", ##__VA_ARGS__); 

#else
//Disable debug
#define DBG(x, ...) 
#define WARN(x, ...)
#define ERR(x, ...) 

#endif

#include "NTPClient.h"

#include "UDPSocket.h"

#include "mbed.h" //time() and set_time()

#define NTP_PORT 123
#define NTP_CLIENT_PORT 0 //Random port
#define NTP_TIMESTAMP_DELTA 2208988800ull //Diff btw a UNIX timestamp (Starting Jan, 1st 1970) and a NTP timestamp (Starting Jan, 1st 1900)

NTPClient::NTPClient() : m_sock()
{


}

#if MBED_MAJOR_VERSION >= 5

#include <SocketAddress.h>
#include <EthernetInterface.h>
//extern EthernetInterface ei_;
EthernetInterface ei_;

class Endpoint {
    SocketAddress sa_;
public:
    Endpoint() : sa_() {}
    int set_address(const char* host, uint16_t port)
    {
        sa_.set_port(port);
        return nsapi_create_stack(&ei_)->gethostbyname(host, &sa_);
    }
    const char* get_address() const { return sa_.get_ip_address(); }
    operator const SocketAddress&() { return sa_; }
    operator SocketAddress*() { return &sa_; }
};

class LegacyUS {
    UDPSocket us_;
public:
    LegacyUS() : us_() {}
    int bind(int port)
    {
        us_.open(&ei_);
        return us_.bind(port);
    }
    void set_blocking(bool blocking, unsigned int)
    {
        us_.set_blocking(blocking);
    }
    int close() { return us_.close(); }
    int sendTo(Endpoint& remote, char* packet, int length)
    {
        return us_.sendto(remote, packet, length);
    }
    int receiveFrom(Endpoint& remote, char* buffer, int length)
    {
        int ret = us_.recvfrom(remote, buffer, length);
        if( ret == NSAPI_ERROR_WOULD_BLOCK )
        {
            wait(0.1);
            ret = 0;
        }
        return ret;
    }
};
#define m_sock (*((LegacyUS*)&m_sock))

#endif  // MBED_MAJOR_VERSION >= 5

NTPResult NTPClient::setTime(const char* host, uint16_t port, uint32_t timeout)
{
#ifdef __DEBUG__
  time_t ctTime;
  ctTime = time(NULL);
  DBG("Time is set to (UTC): %s", ctime(&ctTime));
#endif

  //Create & bind socket
  DBG("Binding socket");
  m_sock.bind(0); //Bind to a random port
  
  m_sock.set_blocking(false, timeout); //Set not blocking

  struct NTPPacket pkt;

  //Now ping the server and wait for response
  DBG("Ping");
  //Prepare NTP Packet:
  pkt.li = 0; //Leap Indicator : No warning
  pkt.vn = 4; //Version Number : 4
  pkt.mode = 3; //Client mode
  pkt.stratum = 0; //Not relevant here
  pkt.poll = 0; //Not significant as well
  pkt.precision = 0; //Neither this one is

  pkt.rootDelay = 0; //Or this one
  pkt.rootDispersion = 0; //Or that one
  pkt.refId = 0; //...

  pkt.refTm_s = 0;
  pkt.origTm_s = 0;
  pkt.rxTm_s = 0;
  pkt.txTm_s = htonl( NTP_TIMESTAMP_DELTA + time(NULL) ); //WARN: We are in LE format, network byte order is BE

  pkt.refTm_f = pkt.origTm_f = pkt.rxTm_f = pkt.txTm_f = 0;

  Endpoint outEndpoint;
  
  if( outEndpoint.set_address(host, port) < 0)
  {
    m_sock.close();
    return NTP_DNS;
  }
  
  //Set timeout, non-blocking and wait using select
  int ret = m_sock.sendTo( outEndpoint, (char*)&pkt, sizeof(NTPPacket) );
  if (ret < 0 )
  {
    ERR("Could not send packet");
    m_sock.close();
    return NTP_CONN;
  }

  //Read response
  Endpoint inEndpoint;
  // Set the inEndpoint address property
  inEndpoint.set_address(outEndpoint.get_address(), 0);
  DBG("Pong");
  do
  {
    ret = m_sock.receiveFrom( inEndpoint, (char*)&pkt, sizeof(NTPPacket) ); //FIXME need a DNS Resolver to actually compare the incoming address with the DNS name
    if(ret < 0)
    {
      ERR("Could not receive packet");
      m_sock.close();
      return NTP_CONN;
    }
  } while( strcmp(outEndpoint.get_address(), inEndpoint.get_address()) != 0 );

  if(ret < sizeof(NTPPacket)) //TODO: Accept chunks
  {
    ERR("Receive packet size does not match");
    m_sock.close();
    return NTP_PRTCL;
  }

  if( pkt.stratum == 0)  //Kiss of death message : Not good !
  {
    ERR("Kissed to death!");
    m_sock.close();
    return NTP_PRTCL;
  }

  //Correct Endianness
  pkt.refTm_s = ntohl( pkt.refTm_s );
  pkt.refTm_f = ntohl( pkt.refTm_f );
  pkt.origTm_s = ntohl( pkt.origTm_s );
  pkt.origTm_f = ntohl( pkt.origTm_f );
  pkt.rxTm_s = ntohl( pkt.rxTm_s );
  pkt.rxTm_f = ntohl( pkt.rxTm_f );
  pkt.txTm_s = ntohl( pkt.txTm_s );
  pkt.txTm_f = ntohl( pkt.txTm_f );

  //Compute offset, see RFC 4330 p.13
  uint32_t destTm_s = (NTP_TIMESTAMP_DELTA + time(NULL));
  int64_t offset = ( (int64_t)( pkt.rxTm_s - pkt.origTm_s ) + (int64_t) ( pkt.txTm_s - destTm_s ) ) / 2; //Avoid overflow
  DBG("Sent @%ul", pkt.txTm_s);
  DBG("Offset: %lld", offset);
  //Set time accordingly
  set_time( time(NULL) + offset );

#ifdef __DEBUG__
  ctTime = time(NULL);
  DBG("Time is now (UTC): %s", ctime(&ctTime));
#endif

  m_sock.close();

  return NTP_OK;
}