Sample program for communicating with Fujitsuu IoT Platform using HTTP

Dependencies:   AsciiFont GR-PEACH_video GraphicsFramework LCD_shield_config R_BSP USBHost_custom easy-connect-gr-peach mbed-http picojson BM1383GLV KX022 rohm-sensor-hal rohm-bh1745

Overview

This sample program shows how to send the cognitive data and sensing data gathered by Omron HVC-P2 and Rohm Sensor Shield respectively to IoT Platform managed by FUJITSU ( http://jp.fujitsu.com/solutions/cloud/k5/function/paas/iot-platform/ ).

Required Hardware

Application Setup

  1. Configure the connection type. For details, please refer to the following link:
    https://developer.mbed.org/teams/Renesas/code/GR-PEACH_IoT_Platform_HTTP_sample/wiki/Connection-Type
  2. Configure Ethernet settings. For details, please refer to the following link:
    https://developer.mbed.org/teams/Renesas/code/GR-PEACH_IoT_Platform_HTTP_sample/wiki/Ethernet-settings
  3. Set up the Access Code of resource where the gathered data would be stored. For details on Access Code, please refer to the following links:
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/userguide_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/apireference_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/portalmanual_en.pdf
  4. Set up URI for the resource where the gathered data would be stored. For details, please refer to the following link:
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/userguide_en.pdf
    https://iot-docs.jp-east-1.paas.cloud.global.fujitsu.com/en/manual/apireference_en.pdf

Building Example

  1. Import this sample program onto mbed Compiler
  2. Configure the program in accordance with the description of Application Setup above
  3. Compile the sample program
  4. Plug the Ethernet cable into GR-PEACH if you would like Ethernet mode
  5. Plug micro-USB cable into the OpenSDA port which lies on the next to the RESET button
  6. Copy the binary previously downloaded to your PC to GR-PEACH in order to flash this program. When the copy is successfully completed, the drive named MBED should be re-mounted automatically
  7. Press the RESET button on the board to run the sample application

Data Format sent to IoT Platform

In this sample program, the cognitive data and sensing data are serialized into the following JSON format using picojson (https://developer.mbed.org/users/mimil/code/picojson/):

  • Face detection data

{
    "RecordType": "HVC-P2(face)",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "Age": xxx,
    "FaceRectangle": {
        "Height": xxx,
        "Left": xxx,
        "Top": xxx,
        "Width": xxx
    },
    "Gender": xxx,
    "Scores": {
        "Anger": xxx,
        "Happiness": xxx,
        "Neutral": xxx,
        "Sadness": xxx,
        "Surprise": xxx
    }
}
  • Body detection data

{
    "RecodeType": "HVC-P2(body)",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "BodyRectangle": {
        "Height": xxx,
        "Left": xxx,
        "Top": xxx,
        "Width": xxx
    }
}
  • Accelerometer data

{
    "RecodeType": "Accelerometer",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ acceleratoin(x-direction), acceleration(y-direction), acceleration(z-direction), null, null, null ]
}

Note that data[0], data[1] and data[2] are filled with the acceleration data in x, y and z direction respectively, and the remaining elements are filled with null.

  • Atmosphere data

{
    "RecodeType": "Atmosphere",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ atmosphere data, null, null, null, null, null ]
}

Note that data[0] is filled with atmosphere data, and the remaining elements are filled with null.

  • Color sensor data

{
    "RecodeType": "Color",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ Red, Green, Blue, Alpha, null, null]
}

Note that data[0], data[1], data[2] and data[3] are filled with Red, Green, Blue and Alpha elements of color respectively, and the remaining elements are filled with null.

  • Temperature data

{
    "RecodeType": "Temperature",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ Temperature, null, null, null, null, null ]
}

Note that data[0] is filled with temperature data, the remaining elements are filled with null.

  • Geomagnetism

{
    "RecodeType": "Geomagnetism",
    "id": "<GR-PEACH ID>-<Sensor ID>",
    "data": [ geomagnetism(x-direction), geomagnetism(y-direction), geomagnetism(z-direction), null, null, null]
}

Note that data[0], data[1] and data[2] are filled with the geomagnetism data in x, y and z direction respectively, and the remaining elements are filled with null.

IoT_Platform/iot_platform.cpp

Committer:
Osamu Nakamura
Date:
2018-04-12
Revision:
7:9ae73f85dc04
Parent:
6:ff12fc4d75f0

File content as of revision 7:9ae73f85dc04:

#include "mbed.h"
#include "picojson.h"
#include "select-demo.h"
#include "iot_platform.h"
#include <string>
#include <iostream>
#include <vector>
#include "BM1383GLV.h"
#include "KX022.h"
#include "BH1745NUC.h"
#include "bh1745_driver.h"
#include "I2CCommon.h"
#include "BM1422AGMV.h"

#if DEMO == DEMO_HTTP
#include "easy-connect.h"
#include "http_request.h"
#include "NTPClient.h"
#include <time.h>

/* Detect result */
result_hvcp2_fd_t result_hvcp2_fd[DETECT_MAX];
result_hvcp2_bd_t result_hvcp2_bd[DETECT_MAX];
uint32_t result_hvcp2_bd_cnt;
uint32_t result_hvcp2_fd_cnt;

Timer http_resp_time;   // response time
uint16_t data[4];       // for color data
float magne[3];         // for geomagnetism data

BM1383GLV sensor_BM(I2C_SDA, I2C_SCL); // Atmosphere
KX022 *sensor_acc; // Accelerometer
BM1422AGMV sensor_magne(I2C_SDA, I2C_SCL); // Geomagnetism

#define JST_OFFSET 9

#define ACCESS_CODE <Access CODE>
#error "You need to replace <Access CODE for your resource> with yours"

std::string put_uri_base("<Base URI>/v1/<Tenant ID>/<Path-to-Resource>.json");
#error "You need to replace <Base URI>, <Tenant ID> and <Path-to-Resource> with yours"

std::string put_uri;

// json-object for camera
picojson::object o_bd[DETECT_MAX], o_fd[DETECT_MAX], o_fr[DETECT_MAX], o_scr[DETECT_MAX];
// json-object for sensor
picojson::object o_acc, o_atmo, o_col, o_temp, o_magne;

picojson::array data_array_acc(6);
picojson::array data_array_atmo(6);
picojson::array data_array_col(6);
picojson::array data_array_temp(6);
picojson::array data_array_magne(6);

// URI for GET request
std::string get_uri("<Base URI>/v1/<Tenant ID>/<Path-to-Resource>/_past.json");
#error "You need to replace <Base URI>, <Tenant ID> and <Path-to-Resource> with yours"

void dump_response(HttpResponse* res)
{
    DEBUG_PRINT("Status: %d - %s\n", res->get_status_code(),
                res->get_status_message().c_str());

    DEBUG_PRINT("Headers:\n");
    for (size_t ix = 0; ix < res->get_headers_length(); ix++) {
        DEBUG_PRINT("\t%s: %s\n", res->get_headers_fields()[ix]->c_str(),
                    res->get_headers_values()[ix]->c_str());
    }
    DEBUG_PRINT("\nBody (%d bytes):\n\n%s\n", res->get_body_length(),
                res->get_body_as_string().c_str());
}

std::string create_put_uri(std::string uri_base)
{
    time_t ctTime;
    struct tm *pnow;
    char date_and_hour[50];
    std::string uri;
    
    ctTime = time(NULL);
    pnow = localtime(&ctTime);
    sprintf(date_and_hour, "?$date=%04d%02d%02dT%02d%02d%02d.000%%2B%02d00",
        (pnow->tm_year + 1900), (pnow->tm_mon + 1), pnow->tm_mday,
        (pnow->tm_hour + JST_OFFSET - pnow->tm_isdst), pnow->tm_min,
        pnow->tm_sec, (JST_OFFSET - pnow->tm_isdst));

    uri = uri_base + date_and_hour;
    
    return(uri);
}

int iot_put(NetworkInterface *network, picojson::object o4)
{

#ifdef ENABLED_NTP
    put_uri = create_put_uri(put_uri_base);
#else
    put_uri = put_uri_base;
#endif  // ENABLED_NTP

    // PUT request to IoT Platform
    HttpRequest* put_req = new HttpRequest(network, HTTP_PUT, put_uri.c_str());
    put_req->set_header("Authorization", ACCESS_CODE);

    picojson::value v_all(o4);

    std::string body = v_all.serialize();

    HttpResponse* put_res = put_req->send(body.c_str(), body.length());
    
    if (!put_res) {
        DEBUG_PRINT("HttpRequest failed (error code %d)\n", put_req->get_error());
        return 1;
    }

    delete put_req;
    return 0;
}

int iot_get(NetworkInterface *network)
{
    // Do GET request to IoT Platform
    // By default the body is automatically parsed and stored in a buffer, this is memory heavy.
    // To receive chunked response, pass in a callback as last parameter to the constructor.
    HttpRequest* get_req = new HttpRequest(network, HTTP_GET, get_uri.c_str());
    get_req->set_header("Authorization", ACCESS_CODE);

    HttpResponse* get_res = get_req->send();

    if (!get_res) {
        DEBUG_PRINT("HttpRequest failed (error code %d)\n", get_req->get_error());
        return 1;
    }

    DEBUG_PRINT("\n----- HTTP GET response -----\n");

    delete get_req;

    return 0;
}
#endif  // DEMO == DEMO_HTTP

void read_color(void)
{
    bool error;
    I2CCommonBegin();
    bh1745_wait_until_found();
    bh1745_initial_setup();
    error = bh1745_read_data(&data[0]);
    MBED_ASSERT(error==0);
}

void get_geomagnetism_value(void)
{
    sensor_magne.get_val(magne);
}

int send_sensor_info(NetworkInterface *network)
{

    /* Type */
    o_acc["RecordType"] = picojson::value((string)"Accelerometer");
    o_atmo["RecordType"] = picojson::value((string)"Atmosphere");
    o_col["RecordType"] = picojson::value((string)"Color");
    o_temp["RecordType"] = picojson::value((string)"Temperature");
    o_magne["RecordType"] = picojson::value((string)"Geomagnetism");

    /* ID */
    o_acc["id"] = picojson::value((string)"0001-0001");
    o_atmo["id"] = picojson::value((string)"0001-0002");
    o_col["id"] = picojson::value((string)"0001-0003");
    o_temp["id"] = picojson::value((string)"0001-0004");
    o_magne["id"] = picojson::value((string)"0001-0005");

    /* Accelerometer data array */
    data_array_acc[0] = picojson::value((double)sensor_acc->getAccX());
    data_array_acc[1] = picojson::value((double)sensor_acc->getAccY());
    data_array_acc[2] = picojson::value((double)sensor_acc->getAccZ());

    /* Atmosphere data array */
    data_array_atmo[0] = picojson::value((double)sensor_BM.getPressure());

    /* Color data array */
    read_color();
    for(int i = 0; i < 4; i++) {
        data_array_col[i] = picojson::value(picojson::value((double)data[i]));
    }

    /* Temperature data array */
    data_array_temp[0] = picojson::value((double)sensor_BM.getTemperature());

    /* Geomagnetism data array */
    get_geomagnetism_value();
    for(int i = 0; i < 3; i++) {
        data_array_magne[i] = picojson::value(picojson::value((double)magne[i]));
    }

    /* Combine data array with object. */
    o_acc["data"] = picojson::value(data_array_acc);
    o_atmo["data"] = picojson::value(data_array_atmo);
    o_col["data"] = picojson::value(data_array_col);
    o_temp["data"] = picojson::value(data_array_temp);
    o_magne["data"] = picojson::value(data_array_magne);

    http_resp_time.reset();
    http_resp_time.start();

    /* send data */
    iot_put(network, o_acc);
    iot_put(network, o_atmo);
    iot_put(network, o_col);
    iot_put(network, o_temp);
    iot_put(network, o_magne);

    
    DEBUG_PRINT("iot_put() Response time:%dms\n", http_resp_time.read_ms());

    return 0;
}

int send_hvc_info(NetworkInterface *network)
{
    /* No face detect */
    if (result_hvcp2_fd_cnt == 0) {
        /* Do nothing */
    } else {
        for (uint32_t i = 0; i < result_hvcp2_fd_cnt; i++) {
            /* picojson-object clear */
            o_fd[i].clear();
            o_fr[i].clear();
            o_scr[i].clear();
            /* Type */
            o_fd[i]["RecordType"] = picojson::value((string)"HVC-P2(face)");
            o_fd[i]["id"] = picojson::value((string) "0001-0006");
            /* Age */
            o_fd[i]["Age"] = picojson::value((double)result_hvcp2_fd[i].age.age);
            /* Gender */
            o_fd[i]["Gender"] = picojson::value((double)result_hvcp2_fd[i].gender.gender);
            /* FaceRectangle */
            o_fr[i]["Top"]  = picojson::value((double)result_hvcp2_fd[i].face_rectangle.MinY);
            o_fr[i]["Left"] = picojson::value((double)result_hvcp2_fd[i].face_rectangle.MinX);
            o_fr[i]["Width"] = picojson::value((double)result_hvcp2_fd[i].face_rectangle.Width);
            o_fr[i]["Height"] = picojson::value((double)result_hvcp2_fd[i].face_rectangle.Height);
            /* Scores */
            o_scr[i]["Neutral"] = picojson::value((double)result_hvcp2_fd[i].scores.score_neutral);
            o_scr[i]["Anger"] = picojson::value((double)result_hvcp2_fd[i].scores.score_anger);
            o_scr[i]["Happiness"] = picojson::value((double)result_hvcp2_fd[i].scores.score_happiness);
            o_scr[i]["Surprise"] = picojson::value((double)result_hvcp2_fd[i].scores.score_surprise);
            o_scr[i]["Sadness"] = picojson::value((double)result_hvcp2_fd[i].scores.score_sadness);
            /* insert 2 structures */
            o_fd[i]["FaceRectangle"] = picojson::value(o_fr[i]);
            o_fd[i]["Scores"] = picojson::value(o_scr[i]);
        }
    }

    /* No body detect */
    if (result_hvcp2_bd_cnt == 0) {
        /* Do nothing */
    } else {
        for (uint32_t i = 0; i < result_hvcp2_bd_cnt; i++) {
            /* picojson-object clear */
            o_bd[i].clear();
            /* Type */
            o_bd[i]["RecordType"] = picojson::value((string)"HVC-P2(body)");
            o_bd[i]["id"] = picojson::value((string)"0001-0007");
            /* BodyRectangle */
            o_bd[i]["Top"] = picojson::value((double)result_hvcp2_bd[i].body_rectangle.MinY);
            o_bd[i]["Left"] = picojson::value((double)result_hvcp2_bd[i].body_rectangle.MinX);
            o_bd[i]["Width"] = picojson::value((double)result_hvcp2_bd[i].body_rectangle.Width);
            o_bd[i]["Height"] = picojson::value((double)result_hvcp2_bd[i].body_rectangle.Height);
        }
    }

    DEBUG_PRINT("Face detect count : %d\n", result_hvcp2_fd_cnt);
    DEBUG_PRINT("Body detect count : %d\n", result_hvcp2_bd_cnt);

    http_resp_time.reset();
    http_resp_time.start();

    /* send data */
    if (result_hvcp2_fd_cnt == 0) {
        /* No need to send data */
    } else {
        for (uint32_t i = 0; i < result_hvcp2_fd_cnt; i++) {
            iot_put(network, o_fd[i]);
        }
    }
    if (result_hvcp2_bd_cnt == 0) {
        /* No need to send data */
    } else {
        for (uint32_t i = 0; i < result_hvcp2_bd_cnt; i++) {
            iot_put(network, o_bd[i]);
        }
    }
    DEBUG_PRINT("iot_put() Response time:%dms\n", http_resp_time.read_ms());
    return 0;
}

void iot_ready_task(void)
{
    KX022 acc(I2C_SDA, I2C_SCL);
    sensor_acc = &acc;

    /* Initialize http */
    NetworkInterface *network = easy_connect(true);
    MBED_ASSERT(network);

#ifdef ENABLED_NTP
    // Generate the string indicating the date and hour specified for PUT request
    NTPClient ntp;
    time_t ctTime;
    struct tm *pnow;
    NTPResult ret;

    ret = ntp.setTime("ntp.nict.jp");
    MBED_ASSERT( ret==0 );

    ctTime = time(NULL);
#endif  // Enabled_NTP

    while (1) {

        semaphore_wait_ret = iot_ready_semaphore.wait();
        MBED_ASSERT(semaphore_wait_ret != -1);

#ifdef USE_HVC_P2
        /* send hvc-p2 data */
        http_resp_time.reset();
        http_resp_time.start();
        send_hvc_info(network);
        DEBUG_PRINT("send_hvc_info() Response time:%dms\n",
               http_resp_time.read_ms());
#endif  // USE_HVC_P2

#ifdef USE_SENSOR_SHIELD
        /* send sensor data */
        http_resp_time.reset();
        http_resp_time.start();
        send_sensor_info(network);
        DEBUG_PRINT("send_sensor_info() Response time:%dms\n",
               http_resp_time.read_ms());
#endif  // USE_SENSOR_SHIELD
        iot_ready_semaphore.release();

        Thread::wait(WAIT_TIME);
    };
}