The "GR-PEACH_Audio_Playback_7InchLCD_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

Dependencies:   GR-PEACH_video R_BSP TLV320_RBSP USBHost_custom

Fork of GR-PEACH_Audio_Playback_Sample by Renesas

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers lpc.c Source File

lpc.c

00001 /* libFLAC - Free Lossless Audio Codec library
00002  * Copyright (C) 2000-2009  Josh Coalson
00003  * Copyright (C) 2011-2014  Xiph.Org Foundation
00004  *
00005  * Redistribution and use in source and binary forms, with or without
00006  * modification, are permitted provided that the following conditions
00007  * are met:
00008  *
00009  * - Redistributions of source code must retain the above copyright
00010  * notice, this list of conditions and the following disclaimer.
00011  *
00012  * - Redistributions in binary form must reproduce the above copyright
00013  * notice, this list of conditions and the following disclaimer in the
00014  * documentation and/or other materials provided with the distribution.
00015  *
00016  * - Neither the name of the Xiph.org Foundation nor the names of its
00017  * contributors may be used to endorse or promote products derived from
00018  * this software without specific prior written permission.
00019  *
00020  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00021  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00022  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00023  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
00024  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00025  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
00026  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
00027  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
00028  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
00029  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00030  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00031  */
00032 
00033 #ifdef HAVE_CONFIG_H
00034 #  include <config.h>
00035 #endif
00036 
00037 #include <math.h>
00038 
00039 #include "FLAC/assert.h"
00040 #include "FLAC/format.h"
00041 #include "share/compat.h"
00042 #include "private/bitmath.h"
00043 #include "private/lpc.h"
00044 #include "private/macros.h"
00045 #if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE
00046 #include <stdio.h>
00047 #endif
00048 
00049 /* OPT: #undef'ing this may improve the speed on some architectures */
00050 #define FLAC__LPC_UNROLLED_FILTER_LOOPS
00051 
00052 #ifndef FLAC__INTEGER_ONLY_LIBRARY
00053 
00054 #if !defined(HAVE_LROUND)
00055 #if defined(_MSC_VER)
00056 #include <float.h>
00057 #define copysign _copysign
00058 #elif defined(__GNUC__)
00059 #define copysign __builtin_copysign
00060 #endif
00061 static inline long int lround(double x) {
00062     return (long)(x + copysign (0.5, x));
00063 }
00064 /* If this fails, we are in the presence of a mid 90's compiler, move along... */
00065 #endif
00066 
00067 void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], unsigned data_len)
00068 {
00069     unsigned i;
00070     for(i = 0; i < data_len; i++)
00071         out[i] = in[i] * window[i];
00072 }
00073 
00074 void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[])
00075 {
00076     /* a readable, but slower, version */
00077 #if 0
00078     FLAC__real d;
00079     unsigned i;
00080 
00081     FLAC__ASSERT(lag > 0);
00082     FLAC__ASSERT(lag <= data_len);
00083 
00084     /*
00085      * Technically we should subtract the mean first like so:
00086      *   for(i = 0; i < data_len; i++)
00087      *     data[i] -= mean;
00088      * but it appears not to make enough of a difference to matter, and
00089      * most signals are already closely centered around zero
00090      */
00091     while(lag--) {
00092         for(i = lag, d = 0.0; i < data_len; i++)
00093             d += data[i] * data[i - lag];
00094         autoc[lag] = d;
00095     }
00096 #endif
00097 
00098     /*
00099      * this version tends to run faster because of better data locality
00100      * ('data_len' is usually much larger than 'lag')
00101      */
00102     FLAC__real d;
00103     unsigned sample, coeff;
00104     const unsigned limit = data_len - lag;
00105 
00106     FLAC__ASSERT(lag > 0);
00107     FLAC__ASSERT(lag <= data_len);
00108 
00109     for(coeff = 0; coeff < lag; coeff++)
00110         autoc[coeff] = 0.0;
00111     for(sample = 0; sample <= limit; sample++) {
00112         d = data[sample];
00113         for(coeff = 0; coeff < lag; coeff++)
00114             autoc[coeff] += d * data[sample+coeff];
00115     }
00116     for(; sample < data_len; sample++) {
00117         d = data[sample];
00118         for(coeff = 0; coeff < data_len - sample; coeff++)
00119             autoc[coeff] += d * data[sample+coeff];
00120     }
00121 }
00122 
00123 void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[])
00124 {
00125     unsigned i, j;
00126     FLAC__double r, err, lpc[FLAC__MAX_LPC_ORDER];
00127 
00128     FLAC__ASSERT(0 != max_order);
00129     FLAC__ASSERT(0 < *max_order);
00130     FLAC__ASSERT(*max_order <= FLAC__MAX_LPC_ORDER);
00131     FLAC__ASSERT(autoc[0] != 0.0);
00132 
00133     err = autoc[0];
00134 
00135     for(i = 0; i < *max_order; i++) {
00136         /* Sum up this iteration's reflection coefficient. */
00137         r = -autoc[i+1];
00138         for(j = 0; j < i; j++)
00139             r -= lpc[j] * autoc[i-j];
00140         r /= err;
00141 
00142         /* Update LPC coefficients and total error. */
00143         lpc[i]=r;
00144         for(j = 0; j < (i>>1); j++) {
00145             FLAC__double tmp = lpc[j];
00146             lpc[j] += r * lpc[i-1-j];
00147             lpc[i-1-j] += r * tmp;
00148         }
00149         if(i & 1)
00150             lpc[j] += lpc[j] * r;
00151 
00152         err *= (1.0 - r * r);
00153 
00154         /* save this order */
00155         for(j = 0; j <= i; j++)
00156             lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */
00157         error[i] = err;
00158 
00159         /* see SF bug https://sourceforge.net/p/flac/bugs/234/ */
00160         if(err == 0.0) {
00161             *max_order = i+1;
00162             return;
00163         }
00164     }
00165 }
00166 
00167 int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift)
00168 {
00169     unsigned i;
00170     FLAC__double cmax;
00171     FLAC__int32 qmax, qmin;
00172 
00173     FLAC__ASSERT(precision > 0);
00174     FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION);
00175 
00176     /* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */
00177     precision--;
00178     qmax = 1 << precision;
00179     qmin = -qmax;
00180     qmax--;
00181 
00182     /* calc cmax = max( |lp_coeff[i]| ) */
00183     cmax = 0.0;
00184     for(i = 0; i < order; i++) {
00185         const FLAC__double d = fabs(lp_coeff[i]);
00186         if(d > cmax)
00187             cmax = d;
00188     }
00189 
00190     if(cmax <= 0.0) {
00191         /* => coefficients are all 0, which means our constant-detect didn't work */
00192         return 2;
00193     }
00194     else {
00195         const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1;
00196         const int min_shiftlimit = -max_shiftlimit - 1;
00197         int log2cmax;
00198 
00199         (void)frexp(cmax, &log2cmax);
00200         log2cmax--;
00201         *shift = (int)precision - log2cmax - 1;
00202 
00203         if(*shift > max_shiftlimit)
00204             *shift = max_shiftlimit;
00205         else if(*shift < min_shiftlimit)
00206             return 1;
00207     }
00208 
00209     if(*shift >= 0) {
00210         FLAC__double error = 0.0;
00211         FLAC__int32 q;
00212         for(i = 0; i < order; i++) {
00213             error += lp_coeff[i] * (1 << *shift);
00214             q = lround(error);
00215 
00216 #ifdef FLAC__OVERFLOW_DETECT
00217             if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
00218                 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
00219             else if(q < qmin)
00220                 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
00221 #endif
00222             if(q > qmax)
00223                 q = qmax;
00224             else if(q < qmin)
00225                 q = qmin;
00226             error -= q;
00227             qlp_coeff[i] = q;
00228         }
00229     }
00230     /* negative shift is very rare but due to design flaw, negative shift is
00231      * a NOP in the decoder, so it must be handled specially by scaling down
00232      * coeffs
00233      */
00234     else {
00235         const int nshift = -(*shift);
00236         FLAC__double error = 0.0;
00237         FLAC__int32 q;
00238 #ifdef DEBUG
00239         fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift=%d order=%u cmax=%f\n", *shift, order, cmax);
00240 #endif
00241         for(i = 0; i < order; i++) {
00242             error += lp_coeff[i] / (1 << nshift);
00243             q = lround(error);
00244 #ifdef FLAC__OVERFLOW_DETECT
00245             if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
00246                 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
00247             else if(q < qmin)
00248                 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
00249 #endif
00250             if(q > qmax)
00251                 q = qmax;
00252             else if(q < qmin)
00253                 q = qmin;
00254             error -= q;
00255             qlp_coeff[i] = q;
00256         }
00257         *shift = 0;
00258     }
00259 
00260     return 0;
00261 }
00262 
00263 #if defined(_MSC_VER)
00264 // silence MSVC warnings about __restrict modifier
00265 #pragma warning ( disable : 4028 )
00266 #endif
00267 
00268 void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 * flac_restrict data, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict residual)
00269 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
00270 {
00271     FLAC__int64 sumo;
00272     unsigned i, j;
00273     FLAC__int32 sum;
00274     const FLAC__int32 *history;
00275 
00276 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
00277     fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
00278     for(i=0;i<order;i++)
00279         fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
00280     fprintf(stderr,"\n");
00281 #endif
00282     FLAC__ASSERT(order > 0);
00283 
00284     for(i = 0; i < data_len; i++) {
00285         sumo = 0;
00286         sum = 0;
00287         history = data;
00288         for(j = 0; j < order; j++) {
00289             sum += qlp_coeff[j] * (*(--history));
00290             sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
00291                 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%" PRId64 "\n",i,j,qlp_coeff[j],*history,sumo);
00292         }
00293         *(residual++) = *(data++) - (sum >> lp_quantization);
00294     }
00295 
00296     /* Here's a slower but clearer version:
00297     for(i = 0; i < data_len; i++) {
00298         sum = 0;
00299         for(j = 0; j < order; j++)
00300             sum += qlp_coeff[j] * data[i-j-1];
00301         residual[i] = data[i] - (sum >> lp_quantization);
00302     }
00303     */
00304 }
00305 #else /* fully unrolled version for normal use */
00306 {
00307     int i;
00308     FLAC__int32 sum;
00309 
00310     FLAC__ASSERT(order > 0);
00311     FLAC__ASSERT(order <= 32);
00312 
00313     /*
00314      * We do unique versions up to 12th order since that's the subset limit.
00315      * Also they are roughly ordered to match frequency of occurrence to
00316      * minimize branching.
00317      */
00318     if(order <= 12) {
00319         if(order > 8) {
00320             if(order > 10) {
00321                 if(order == 12) {
00322                     for(i = 0; i < (int)data_len; i++) {
00323                         sum = 0;
00324                         sum += qlp_coeff[11] * data[i-12];
00325                         sum += qlp_coeff[10] * data[i-11];
00326                         sum += qlp_coeff[9] * data[i-10];
00327                         sum += qlp_coeff[8] * data[i-9];
00328                         sum += qlp_coeff[7] * data[i-8];
00329                         sum += qlp_coeff[6] * data[i-7];
00330                         sum += qlp_coeff[5] * data[i-6];
00331                         sum += qlp_coeff[4] * data[i-5];
00332                         sum += qlp_coeff[3] * data[i-4];
00333                         sum += qlp_coeff[2] * data[i-3];
00334                         sum += qlp_coeff[1] * data[i-2];
00335                         sum += qlp_coeff[0] * data[i-1];
00336                         residual[i] = data[i] - (sum >> lp_quantization);
00337                     }
00338                 }
00339                 else { /* order == 11 */
00340                     for(i = 0; i < (int)data_len; i++) {
00341                         sum = 0;
00342                         sum += qlp_coeff[10] * data[i-11];
00343                         sum += qlp_coeff[9] * data[i-10];
00344                         sum += qlp_coeff[8] * data[i-9];
00345                         sum += qlp_coeff[7] * data[i-8];
00346                         sum += qlp_coeff[6] * data[i-7];
00347                         sum += qlp_coeff[5] * data[i-6];
00348                         sum += qlp_coeff[4] * data[i-5];
00349                         sum += qlp_coeff[3] * data[i-4];
00350                         sum += qlp_coeff[2] * data[i-3];
00351                         sum += qlp_coeff[1] * data[i-2];
00352                         sum += qlp_coeff[0] * data[i-1];
00353                         residual[i] = data[i] - (sum >> lp_quantization);
00354                     }
00355                 }
00356             }
00357             else {
00358                 if(order == 10) {
00359                     for(i = 0; i < (int)data_len; i++) {
00360                         sum = 0;
00361                         sum += qlp_coeff[9] * data[i-10];
00362                         sum += qlp_coeff[8] * data[i-9];
00363                         sum += qlp_coeff[7] * data[i-8];
00364                         sum += qlp_coeff[6] * data[i-7];
00365                         sum += qlp_coeff[5] * data[i-6];
00366                         sum += qlp_coeff[4] * data[i-5];
00367                         sum += qlp_coeff[3] * data[i-4];
00368                         sum += qlp_coeff[2] * data[i-3];
00369                         sum += qlp_coeff[1] * data[i-2];
00370                         sum += qlp_coeff[0] * data[i-1];
00371                         residual[i] = data[i] - (sum >> lp_quantization);
00372                     }
00373                 }
00374                 else { /* order == 9 */
00375                     for(i = 0; i < (int)data_len; i++) {
00376                         sum = 0;
00377                         sum += qlp_coeff[8] * data[i-9];
00378                         sum += qlp_coeff[7] * data[i-8];
00379                         sum += qlp_coeff[6] * data[i-7];
00380                         sum += qlp_coeff[5] * data[i-6];
00381                         sum += qlp_coeff[4] * data[i-5];
00382                         sum += qlp_coeff[3] * data[i-4];
00383                         sum += qlp_coeff[2] * data[i-3];
00384                         sum += qlp_coeff[1] * data[i-2];
00385                         sum += qlp_coeff[0] * data[i-1];
00386                         residual[i] = data[i] - (sum >> lp_quantization);
00387                     }
00388                 }
00389             }
00390         }
00391         else if(order > 4) {
00392             if(order > 6) {
00393                 if(order == 8) {
00394                     for(i = 0; i < (int)data_len; i++) {
00395                         sum = 0;
00396                         sum += qlp_coeff[7] * data[i-8];
00397                         sum += qlp_coeff[6] * data[i-7];
00398                         sum += qlp_coeff[5] * data[i-6];
00399                         sum += qlp_coeff[4] * data[i-5];
00400                         sum += qlp_coeff[3] * data[i-4];
00401                         sum += qlp_coeff[2] * data[i-3];
00402                         sum += qlp_coeff[1] * data[i-2];
00403                         sum += qlp_coeff[0] * data[i-1];
00404                         residual[i] = data[i] - (sum >> lp_quantization);
00405                     }
00406                 }
00407                 else { /* order == 7 */
00408                     for(i = 0; i < (int)data_len; i++) {
00409                         sum = 0;
00410                         sum += qlp_coeff[6] * data[i-7];
00411                         sum += qlp_coeff[5] * data[i-6];
00412                         sum += qlp_coeff[4] * data[i-5];
00413                         sum += qlp_coeff[3] * data[i-4];
00414                         sum += qlp_coeff[2] * data[i-3];
00415                         sum += qlp_coeff[1] * data[i-2];
00416                         sum += qlp_coeff[0] * data[i-1];
00417                         residual[i] = data[i] - (sum >> lp_quantization);
00418                     }
00419                 }
00420             }
00421             else {
00422                 if(order == 6) {
00423                     for(i = 0; i < (int)data_len; i++) {
00424                         sum = 0;
00425                         sum += qlp_coeff[5] * data[i-6];
00426                         sum += qlp_coeff[4] * data[i-5];
00427                         sum += qlp_coeff[3] * data[i-4];
00428                         sum += qlp_coeff[2] * data[i-3];
00429                         sum += qlp_coeff[1] * data[i-2];
00430                         sum += qlp_coeff[0] * data[i-1];
00431                         residual[i] = data[i] - (sum >> lp_quantization);
00432                     }
00433                 }
00434                 else { /* order == 5 */
00435                     for(i = 0; i < (int)data_len; i++) {
00436                         sum = 0;
00437                         sum += qlp_coeff[4] * data[i-5];
00438                         sum += qlp_coeff[3] * data[i-4];
00439                         sum += qlp_coeff[2] * data[i-3];
00440                         sum += qlp_coeff[1] * data[i-2];
00441                         sum += qlp_coeff[0] * data[i-1];
00442                         residual[i] = data[i] - (sum >> lp_quantization);
00443                     }
00444                 }
00445             }
00446         }
00447         else {
00448             if(order > 2) {
00449                 if(order == 4) {
00450                     for(i = 0; i < (int)data_len; i++) {
00451                         sum = 0;
00452                         sum += qlp_coeff[3] * data[i-4];
00453                         sum += qlp_coeff[2] * data[i-3];
00454                         sum += qlp_coeff[1] * data[i-2];
00455                         sum += qlp_coeff[0] * data[i-1];
00456                         residual[i] = data[i] - (sum >> lp_quantization);
00457                     }
00458                 }
00459                 else { /* order == 3 */
00460                     for(i = 0; i < (int)data_len; i++) {
00461                         sum = 0;
00462                         sum += qlp_coeff[2] * data[i-3];
00463                         sum += qlp_coeff[1] * data[i-2];
00464                         sum += qlp_coeff[0] * data[i-1];
00465                         residual[i] = data[i] - (sum >> lp_quantization);
00466                     }
00467                 }
00468             }
00469             else {
00470                 if(order == 2) {
00471                     for(i = 0; i < (int)data_len; i++) {
00472                         sum = 0;
00473                         sum += qlp_coeff[1] * data[i-2];
00474                         sum += qlp_coeff[0] * data[i-1];
00475                         residual[i] = data[i] - (sum >> lp_quantization);
00476                     }
00477                 }
00478                 else { /* order == 1 */
00479                     for(i = 0; i < (int)data_len; i++)
00480                         residual[i] = data[i] - ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
00481                 }
00482             }
00483         }
00484     }
00485     else { /* order > 12 */
00486         for(i = 0; i < (int)data_len; i++) {
00487             sum = 0;
00488             switch(order) {
00489                 case 32: sum += qlp_coeff[31] * data[i-32];
00490                 case 31: sum += qlp_coeff[30] * data[i-31];
00491                 case 30: sum += qlp_coeff[29] * data[i-30];
00492                 case 29: sum += qlp_coeff[28] * data[i-29];
00493                 case 28: sum += qlp_coeff[27] * data[i-28];
00494                 case 27: sum += qlp_coeff[26] * data[i-27];
00495                 case 26: sum += qlp_coeff[25] * data[i-26];
00496                 case 25: sum += qlp_coeff[24] * data[i-25];
00497                 case 24: sum += qlp_coeff[23] * data[i-24];
00498                 case 23: sum += qlp_coeff[22] * data[i-23];
00499                 case 22: sum += qlp_coeff[21] * data[i-22];
00500                 case 21: sum += qlp_coeff[20] * data[i-21];
00501                 case 20: sum += qlp_coeff[19] * data[i-20];
00502                 case 19: sum += qlp_coeff[18] * data[i-19];
00503                 case 18: sum += qlp_coeff[17] * data[i-18];
00504                 case 17: sum += qlp_coeff[16] * data[i-17];
00505                 case 16: sum += qlp_coeff[15] * data[i-16];
00506                 case 15: sum += qlp_coeff[14] * data[i-15];
00507                 case 14: sum += qlp_coeff[13] * data[i-14];
00508                 case 13: sum += qlp_coeff[12] * data[i-13];
00509                          sum += qlp_coeff[11] * data[i-12];
00510                          sum += qlp_coeff[10] * data[i-11];
00511                          sum += qlp_coeff[ 9] * data[i-10];
00512                          sum += qlp_coeff[ 8] * data[i- 9];
00513                          sum += qlp_coeff[ 7] * data[i- 8];
00514                          sum += qlp_coeff[ 6] * data[i- 7];
00515                          sum += qlp_coeff[ 5] * data[i- 6];
00516                          sum += qlp_coeff[ 4] * data[i- 5];
00517                          sum += qlp_coeff[ 3] * data[i- 4];
00518                          sum += qlp_coeff[ 2] * data[i- 3];
00519                          sum += qlp_coeff[ 1] * data[i- 2];
00520                          sum += qlp_coeff[ 0] * data[i- 1];
00521             }
00522             residual[i] = data[i] - (sum >> lp_quantization);
00523         }
00524     }
00525 }
00526 #endif
00527 
00528 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 * flac_restrict data, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict residual)
00529 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
00530 {
00531     unsigned i, j;
00532     FLAC__int64 sum;
00533     const FLAC__int32 *history;
00534 
00535 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
00536     fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
00537     for(i=0;i<order;i++)
00538         fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
00539     fprintf(stderr,"\n");
00540 #endif
00541     FLAC__ASSERT(order > 0);
00542 
00543     for(i = 0; i < data_len; i++) {
00544         sum = 0;
00545         history = data;
00546         for(j = 0; j < order; j++)
00547             sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
00548         if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
00549             fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%" PRId64 "\n", i, (sum >> lp_quantization));
00550             break;
00551         }
00552         if(FLAC__bitmath_silog2_wide((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) {
00553             fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%" PRId64 ", residual=%" PRId64 "\n", i, *data, (int64_t)(sum >> lp_quantization), ((FLAC__int64)(*data) - (sum >> lp_quantization)));
00554             break;
00555         }
00556         *(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization);
00557     }
00558 }
00559 #else /* fully unrolled version for normal use */
00560 {
00561     int i;
00562     FLAC__int64 sum;
00563 
00564     FLAC__ASSERT(order > 0);
00565     FLAC__ASSERT(order <= 32);
00566 
00567     /*
00568      * We do unique versions up to 12th order since that's the subset limit.
00569      * Also they are roughly ordered to match frequency of occurrence to
00570      * minimize branching.
00571      */
00572     if(order <= 12) {
00573         if(order > 8) {
00574             if(order > 10) {
00575                 if(order == 12) {
00576                     for(i = 0; i < (int)data_len; i++) {
00577                         sum = 0;
00578                         sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
00579                         sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
00580                         sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
00581                         sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
00582                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
00583                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
00584                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
00585                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
00586                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00587                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00588                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00589                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00590                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00591                     }
00592                 }
00593                 else { /* order == 11 */
00594                     for(i = 0; i < (int)data_len; i++) {
00595                         sum = 0;
00596                         sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
00597                         sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
00598                         sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
00599                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
00600                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
00601                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
00602                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
00603                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00604                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00605                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00606                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00607                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00608                     }
00609                 }
00610             }
00611             else {
00612                 if(order == 10) {
00613                     for(i = 0; i < (int)data_len; i++) {
00614                         sum = 0;
00615                         sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
00616                         sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
00617                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
00618                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
00619                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
00620                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
00621                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00622                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00623                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00624                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00625                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00626                     }
00627                 }
00628                 else { /* order == 9 */
00629                     for(i = 0; i < (int)data_len; i++) {
00630                         sum = 0;
00631                         sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
00632                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
00633                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
00634                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
00635                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
00636                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00637                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00638                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00639                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00640                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00641                     }
00642                 }
00643             }
00644         }
00645         else if(order > 4) {
00646             if(order > 6) {
00647                 if(order == 8) {
00648                     for(i = 0; i < (int)data_len; i++) {
00649                         sum = 0;
00650                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
00651                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
00652                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
00653                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
00654                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00655                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00656                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00657                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00658                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00659                     }
00660                 }
00661                 else { /* order == 7 */
00662                     for(i = 0; i < (int)data_len; i++) {
00663                         sum = 0;
00664                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
00665                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
00666                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
00667                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00668                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00669                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00670                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00671                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00672                     }
00673                 }
00674             }
00675             else {
00676                 if(order == 6) {
00677                     for(i = 0; i < (int)data_len; i++) {
00678                         sum = 0;
00679                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
00680                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
00681                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00682                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00683                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00684                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00685                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00686                     }
00687                 }
00688                 else { /* order == 5 */
00689                     for(i = 0; i < (int)data_len; i++) {
00690                         sum = 0;
00691                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
00692                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00693                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00694                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00695                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00696                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00697                     }
00698                 }
00699             }
00700         }
00701         else {
00702             if(order > 2) {
00703                 if(order == 4) {
00704                     for(i = 0; i < (int)data_len; i++) {
00705                         sum = 0;
00706                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
00707                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00708                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00709                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00710                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00711                     }
00712                 }
00713                 else { /* order == 3 */
00714                     for(i = 0; i < (int)data_len; i++) {
00715                         sum = 0;
00716                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
00717                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00718                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00719                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00720                     }
00721                 }
00722             }
00723             else {
00724                 if(order == 2) {
00725                     for(i = 0; i < (int)data_len; i++) {
00726                         sum = 0;
00727                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
00728                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
00729                         residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00730                     }
00731                 }
00732                 else { /* order == 1 */
00733                     for(i = 0; i < (int)data_len; i++)
00734                         residual[i] = data[i] - (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
00735                 }
00736             }
00737         }
00738     }
00739     else { /* order > 12 */
00740         for(i = 0; i < (int)data_len; i++) {
00741             sum = 0;
00742             switch(order) {
00743                 case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
00744                 case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
00745                 case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
00746                 case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
00747                 case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
00748                 case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
00749                 case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
00750                 case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
00751                 case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
00752                 case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
00753                 case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
00754                 case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
00755                 case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
00756                 case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
00757                 case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
00758                 case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
00759                 case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
00760                 case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
00761                 case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
00762                 case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
00763                          sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
00764                          sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
00765                          sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
00766                          sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
00767                          sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
00768                          sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
00769                          sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
00770                          sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
00771                          sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
00772                          sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
00773                          sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
00774                          sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
00775             }
00776             residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
00777         }
00778     }
00779 }
00780 #endif
00781 
00782 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
00783 
00784 void FLAC__lpc_restore_signal(const FLAC__int32 * flac_restrict residual, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict data)
00785 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
00786 {
00787     FLAC__int64 sumo;
00788     unsigned i, j;
00789     FLAC__int32 sum;
00790     const FLAC__int32 *r = residual, *history;
00791 
00792 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
00793     fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
00794     for(i=0;i<order;i++)
00795         fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
00796     fprintf(stderr,"\n");
00797 #endif
00798     FLAC__ASSERT(order > 0);
00799 
00800     for(i = 0; i < data_len; i++) {
00801         sumo = 0;
00802         sum = 0;
00803         history = data;
00804         for(j = 0; j < order; j++) {
00805             sum += qlp_coeff[j] * (*(--history));
00806             sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
00807             if(sumo > 2147483647ll || sumo < -2147483648ll)
00808                 fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%" PRId64 "\n",i,j,qlp_coeff[j],*history,sumo);
00809         }
00810         *(data++) = *(r++) + (sum >> lp_quantization);
00811     }
00812 
00813     /* Here's a slower but clearer version:
00814     for(i = 0; i < data_len; i++) {
00815         sum = 0;
00816         for(j = 0; j < order; j++)
00817             sum += qlp_coeff[j] * data[i-j-1];
00818         data[i] = residual[i] + (sum >> lp_quantization);
00819     }
00820     */
00821 }
00822 #else /* fully unrolled version for normal use */
00823 {
00824     int i;
00825     FLAC__int32 sum;
00826 
00827     FLAC__ASSERT(order > 0);
00828     FLAC__ASSERT(order <= 32);
00829 
00830     /*
00831      * We do unique versions up to 12th order since that's the subset limit.
00832      * Also they are roughly ordered to match frequency of occurrence to
00833      * minimize branching.
00834      */
00835     if(order <= 12) {
00836         if(order > 8) {
00837             if(order > 10) {
00838                 if(order == 12) {
00839                     for(i = 0; i < (int)data_len; i++) {
00840                         sum = 0;
00841                         sum += qlp_coeff[11] * data[i-12];
00842                         sum += qlp_coeff[10] * data[i-11];
00843                         sum += qlp_coeff[9] * data[i-10];
00844                         sum += qlp_coeff[8] * data[i-9];
00845                         sum += qlp_coeff[7] * data[i-8];
00846                         sum += qlp_coeff[6] * data[i-7];
00847                         sum += qlp_coeff[5] * data[i-6];
00848                         sum += qlp_coeff[4] * data[i-5];
00849                         sum += qlp_coeff[3] * data[i-4];
00850                         sum += qlp_coeff[2] * data[i-3];
00851                         sum += qlp_coeff[1] * data[i-2];
00852                         sum += qlp_coeff[0] * data[i-1];
00853                         data[i] = residual[i] + (sum >> lp_quantization);
00854                     }
00855                 }
00856                 else { /* order == 11 */
00857                     for(i = 0; i < (int)data_len; i++) {
00858                         sum = 0;
00859                         sum += qlp_coeff[10] * data[i-11];
00860                         sum += qlp_coeff[9] * data[i-10];
00861                         sum += qlp_coeff[8] * data[i-9];
00862                         sum += qlp_coeff[7] * data[i-8];
00863                         sum += qlp_coeff[6] * data[i-7];
00864                         sum += qlp_coeff[5] * data[i-6];
00865                         sum += qlp_coeff[4] * data[i-5];
00866                         sum += qlp_coeff[3] * data[i-4];
00867                         sum += qlp_coeff[2] * data[i-3];
00868                         sum += qlp_coeff[1] * data[i-2];
00869                         sum += qlp_coeff[0] * data[i-1];
00870                         data[i] = residual[i] + (sum >> lp_quantization);
00871                     }
00872                 }
00873             }
00874             else {
00875                 if(order == 10) {
00876                     for(i = 0; i < (int)data_len; i++) {
00877                         sum = 0;
00878                         sum += qlp_coeff[9] * data[i-10];
00879                         sum += qlp_coeff[8] * data[i-9];
00880                         sum += qlp_coeff[7] * data[i-8];
00881                         sum += qlp_coeff[6] * data[i-7];
00882                         sum += qlp_coeff[5] * data[i-6];
00883                         sum += qlp_coeff[4] * data[i-5];
00884                         sum += qlp_coeff[3] * data[i-4];
00885                         sum += qlp_coeff[2] * data[i-3];
00886                         sum += qlp_coeff[1] * data[i-2];
00887                         sum += qlp_coeff[0] * data[i-1];
00888                         data[i] = residual[i] + (sum >> lp_quantization);
00889                     }
00890                 }
00891                 else { /* order == 9 */
00892                     for(i = 0; i < (int)data_len; i++) {
00893                         sum = 0;
00894                         sum += qlp_coeff[8] * data[i-9];
00895                         sum += qlp_coeff[7] * data[i-8];
00896                         sum += qlp_coeff[6] * data[i-7];
00897                         sum += qlp_coeff[5] * data[i-6];
00898                         sum += qlp_coeff[4] * data[i-5];
00899                         sum += qlp_coeff[3] * data[i-4];
00900                         sum += qlp_coeff[2] * data[i-3];
00901                         sum += qlp_coeff[1] * data[i-2];
00902                         sum += qlp_coeff[0] * data[i-1];
00903                         data[i] = residual[i] + (sum >> lp_quantization);
00904                     }
00905                 }
00906             }
00907         }
00908         else if(order > 4) {
00909             if(order > 6) {
00910                 if(order == 8) {
00911                     for(i = 0; i < (int)data_len; i++) {
00912                         sum = 0;
00913                         sum += qlp_coeff[7] * data[i-8];
00914                         sum += qlp_coeff[6] * data[i-7];
00915                         sum += qlp_coeff[5] * data[i-6];
00916                         sum += qlp_coeff[4] * data[i-5];
00917                         sum += qlp_coeff[3] * data[i-4];
00918                         sum += qlp_coeff[2] * data[i-3];
00919                         sum += qlp_coeff[1] * data[i-2];
00920                         sum += qlp_coeff[0] * data[i-1];
00921                         data[i] = residual[i] + (sum >> lp_quantization);
00922                     }
00923                 }
00924                 else { /* order == 7 */
00925                     for(i = 0; i < (int)data_len; i++) {
00926                         sum = 0;
00927                         sum += qlp_coeff[6] * data[i-7];
00928                         sum += qlp_coeff[5] * data[i-6];
00929                         sum += qlp_coeff[4] * data[i-5];
00930                         sum += qlp_coeff[3] * data[i-4];
00931                         sum += qlp_coeff[2] * data[i-3];
00932                         sum += qlp_coeff[1] * data[i-2];
00933                         sum += qlp_coeff[0] * data[i-1];
00934                         data[i] = residual[i] + (sum >> lp_quantization);
00935                     }
00936                 }
00937             }
00938             else {
00939                 if(order == 6) {
00940                     for(i = 0; i < (int)data_len; i++) {
00941                         sum = 0;
00942                         sum += qlp_coeff[5] * data[i-6];
00943                         sum += qlp_coeff[4] * data[i-5];
00944                         sum += qlp_coeff[3] * data[i-4];
00945                         sum += qlp_coeff[2] * data[i-3];
00946                         sum += qlp_coeff[1] * data[i-2];
00947                         sum += qlp_coeff[0] * data[i-1];
00948                         data[i] = residual[i] + (sum >> lp_quantization);
00949                     }
00950                 }
00951                 else { /* order == 5 */
00952                     for(i = 0; i < (int)data_len; i++) {
00953                         sum = 0;
00954                         sum += qlp_coeff[4] * data[i-5];
00955                         sum += qlp_coeff[3] * data[i-4];
00956                         sum += qlp_coeff[2] * data[i-3];
00957                         sum += qlp_coeff[1] * data[i-2];
00958                         sum += qlp_coeff[0] * data[i-1];
00959                         data[i] = residual[i] + (sum >> lp_quantization);
00960                     }
00961                 }
00962             }
00963         }
00964         else {
00965             if(order > 2) {
00966                 if(order == 4) {
00967                     for(i = 0; i < (int)data_len; i++) {
00968                         sum = 0;
00969                         sum += qlp_coeff[3] * data[i-4];
00970                         sum += qlp_coeff[2] * data[i-3];
00971                         sum += qlp_coeff[1] * data[i-2];
00972                         sum += qlp_coeff[0] * data[i-1];
00973                         data[i] = residual[i] + (sum >> lp_quantization);
00974                     }
00975                 }
00976                 else { /* order == 3 */
00977                     for(i = 0; i < (int)data_len; i++) {
00978                         sum = 0;
00979                         sum += qlp_coeff[2] * data[i-3];
00980                         sum += qlp_coeff[1] * data[i-2];
00981                         sum += qlp_coeff[0] * data[i-1];
00982                         data[i] = residual[i] + (sum >> lp_quantization);
00983                     }
00984                 }
00985             }
00986             else {
00987                 if(order == 2) {
00988                     for(i = 0; i < (int)data_len; i++) {
00989                         sum = 0;
00990                         sum += qlp_coeff[1] * data[i-2];
00991                         sum += qlp_coeff[0] * data[i-1];
00992                         data[i] = residual[i] + (sum >> lp_quantization);
00993                     }
00994                 }
00995                 else { /* order == 1 */
00996                     for(i = 0; i < (int)data_len; i++)
00997                         data[i] = residual[i] + ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
00998                 }
00999             }
01000         }
01001     }
01002     else { /* order > 12 */
01003         for(i = 0; i < (int)data_len; i++) {
01004             sum = 0;
01005             switch(order) {
01006                 case 32: sum += qlp_coeff[31] * data[i-32];
01007                 case 31: sum += qlp_coeff[30] * data[i-31];
01008                 case 30: sum += qlp_coeff[29] * data[i-30];
01009                 case 29: sum += qlp_coeff[28] * data[i-29];
01010                 case 28: sum += qlp_coeff[27] * data[i-28];
01011                 case 27: sum += qlp_coeff[26] * data[i-27];
01012                 case 26: sum += qlp_coeff[25] * data[i-26];
01013                 case 25: sum += qlp_coeff[24] * data[i-25];
01014                 case 24: sum += qlp_coeff[23] * data[i-24];
01015                 case 23: sum += qlp_coeff[22] * data[i-23];
01016                 case 22: sum += qlp_coeff[21] * data[i-22];
01017                 case 21: sum += qlp_coeff[20] * data[i-21];
01018                 case 20: sum += qlp_coeff[19] * data[i-20];
01019                 case 19: sum += qlp_coeff[18] * data[i-19];
01020                 case 18: sum += qlp_coeff[17] * data[i-18];
01021                 case 17: sum += qlp_coeff[16] * data[i-17];
01022                 case 16: sum += qlp_coeff[15] * data[i-16];
01023                 case 15: sum += qlp_coeff[14] * data[i-15];
01024                 case 14: sum += qlp_coeff[13] * data[i-14];
01025                 case 13: sum += qlp_coeff[12] * data[i-13];
01026                          sum += qlp_coeff[11] * data[i-12];
01027                          sum += qlp_coeff[10] * data[i-11];
01028                          sum += qlp_coeff[ 9] * data[i-10];
01029                          sum += qlp_coeff[ 8] * data[i- 9];
01030                          sum += qlp_coeff[ 7] * data[i- 8];
01031                          sum += qlp_coeff[ 6] * data[i- 7];
01032                          sum += qlp_coeff[ 5] * data[i- 6];
01033                          sum += qlp_coeff[ 4] * data[i- 5];
01034                          sum += qlp_coeff[ 3] * data[i- 4];
01035                          sum += qlp_coeff[ 2] * data[i- 3];
01036                          sum += qlp_coeff[ 1] * data[i- 2];
01037                          sum += qlp_coeff[ 0] * data[i- 1];
01038             }
01039             data[i] = residual[i] + (sum >> lp_quantization);
01040         }
01041     }
01042 }
01043 #endif
01044 
01045 void FLAC__lpc_restore_signal_wide(const FLAC__int32 * flac_restrict residual, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict data)
01046 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
01047 {
01048     unsigned i, j;
01049     FLAC__int64 sum;
01050     const FLAC__int32 *r = residual, *history;
01051 
01052 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
01053     fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
01054     for(i=0;i<order;i++)
01055         fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
01056     fprintf(stderr,"\n");
01057 #endif
01058     FLAC__ASSERT(order > 0);
01059 
01060     for(i = 0; i < data_len; i++) {
01061         sum = 0;
01062         history = data;
01063         for(j = 0; j < order; j++)
01064             sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
01065         if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
01066             fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%" PRId64 "\n", i, (sum >> lp_quantization));
01067             break;
01068         }
01069         if(FLAC__bitmath_silog2_wide((FLAC__int64)(*r) + (sum >> lp_quantization)) > 32) {
01070             fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%" PRId64 ", data=%" PRId64 "\n", i, *r, (sum >> lp_quantization), ((FLAC__int64)(*r) + (sum >> lp_quantization)));
01071             break;
01072         }
01073         *(data++) = *(r++) + (FLAC__int32)(sum >> lp_quantization);
01074     }
01075 }
01076 #else /* fully unrolled version for normal use */
01077 {
01078     int i;
01079     FLAC__int64 sum;
01080 
01081     FLAC__ASSERT(order > 0);
01082     FLAC__ASSERT(order <= 32);
01083 
01084     /*
01085      * We do unique versions up to 12th order since that's the subset limit.
01086      * Also they are roughly ordered to match frequency of occurrence to
01087      * minimize branching.
01088      */
01089     if(order <= 12) {
01090         if(order > 8) {
01091             if(order > 10) {
01092                 if(order == 12) {
01093                     for(i = 0; i < (int)data_len; i++) {
01094                         sum = 0;
01095                         sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
01096                         sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
01097                         sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
01098                         sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
01099                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
01100                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
01101                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
01102                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
01103                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01104                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01105                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01106                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01107                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01108                     }
01109                 }
01110                 else { /* order == 11 */
01111                     for(i = 0; i < (int)data_len; i++) {
01112                         sum = 0;
01113                         sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
01114                         sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
01115                         sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
01116                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
01117                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
01118                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
01119                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
01120                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01121                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01122                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01123                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01124                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01125                     }
01126                 }
01127             }
01128             else {
01129                 if(order == 10) {
01130                     for(i = 0; i < (int)data_len; i++) {
01131                         sum = 0;
01132                         sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
01133                         sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
01134                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
01135                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
01136                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
01137                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
01138                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01139                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01140                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01141                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01142                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01143                     }
01144                 }
01145                 else { /* order == 9 */
01146                     for(i = 0; i < (int)data_len; i++) {
01147                         sum = 0;
01148                         sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
01149                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
01150                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
01151                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
01152                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
01153                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01154                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01155                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01156                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01157                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01158                     }
01159                 }
01160             }
01161         }
01162         else if(order > 4) {
01163             if(order > 6) {
01164                 if(order == 8) {
01165                     for(i = 0; i < (int)data_len; i++) {
01166                         sum = 0;
01167                         sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
01168                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
01169                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
01170                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
01171                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01172                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01173                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01174                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01175                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01176                     }
01177                 }
01178                 else { /* order == 7 */
01179                     for(i = 0; i < (int)data_len; i++) {
01180                         sum = 0;
01181                         sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
01182                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
01183                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
01184                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01185                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01186                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01187                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01188                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01189                     }
01190                 }
01191             }
01192             else {
01193                 if(order == 6) {
01194                     for(i = 0; i < (int)data_len; i++) {
01195                         sum = 0;
01196                         sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
01197                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
01198                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01199                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01200                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01201                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01202                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01203                     }
01204                 }
01205                 else { /* order == 5 */
01206                     for(i = 0; i < (int)data_len; i++) {
01207                         sum = 0;
01208                         sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
01209                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01210                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01211                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01212                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01213                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01214                     }
01215                 }
01216             }
01217         }
01218         else {
01219             if(order > 2) {
01220                 if(order == 4) {
01221                     for(i = 0; i < (int)data_len; i++) {
01222                         sum = 0;
01223                         sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
01224                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01225                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01226                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01227                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01228                     }
01229                 }
01230                 else { /* order == 3 */
01231                     for(i = 0; i < (int)data_len; i++) {
01232                         sum = 0;
01233                         sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
01234                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01235                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01236                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01237                     }
01238                 }
01239             }
01240             else {
01241                 if(order == 2) {
01242                     for(i = 0; i < (int)data_len; i++) {
01243                         sum = 0;
01244                         sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
01245                         sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
01246                         data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01247                     }
01248                 }
01249                 else { /* order == 1 */
01250                     for(i = 0; i < (int)data_len; i++)
01251                         data[i] = residual[i] + (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
01252                 }
01253             }
01254         }
01255     }
01256     else { /* order > 12 */
01257         for(i = 0; i < (int)data_len; i++) {
01258             sum = 0;
01259             switch(order) {
01260                 case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
01261                 case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
01262                 case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
01263                 case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
01264                 case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
01265                 case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
01266                 case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
01267                 case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
01268                 case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
01269                 case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
01270                 case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
01271                 case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
01272                 case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
01273                 case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
01274                 case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
01275                 case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
01276                 case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
01277                 case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
01278                 case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
01279                 case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
01280                          sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
01281                          sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
01282                          sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
01283                          sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
01284                          sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
01285                          sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
01286                          sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
01287                          sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
01288                          sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
01289                          sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
01290                          sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
01291                          sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
01292             }
01293             data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
01294         }
01295     }
01296 }
01297 #endif
01298 
01299 #if defined(_MSC_VER)
01300 #pragma warning ( default : 4028 )
01301 #endif
01302 
01303 #ifndef FLAC__INTEGER_ONLY_LIBRARY
01304 
01305 FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples)
01306 {
01307     FLAC__double error_scale;
01308 
01309     FLAC__ASSERT(total_samples > 0);
01310 
01311     error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;
01312 
01313     return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale);
01314 }
01315 
01316 FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale)
01317 {
01318     if(lpc_error > 0.0) {
01319         FLAC__double bps = (FLAC__double)0.5 * log(error_scale * lpc_error) / M_LN2;
01320         if(bps >= 0.0)
01321             return bps;
01322         else
01323             return 0.0;
01324     }
01325     else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */
01326         return 1e32;
01327     }
01328     else {
01329         return 0.0;
01330     }
01331 }
01332 
01333 unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned overhead_bits_per_order)
01334 {
01335     unsigned order, indx, best_index; /* 'index' the index into lpc_error; index==order-1 since lpc_error[0] is for order==1, lpc_error[1] is for order==2, etc */
01336     FLAC__double bits, best_bits, error_scale;
01337 
01338     FLAC__ASSERT(max_order > 0);
01339     FLAC__ASSERT(total_samples > 0);
01340 
01341     error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;
01342 
01343     best_index = 0;
01344     best_bits = (unsigned)(-1);
01345 
01346     for(indx = 0, order = 1; indx < max_order; indx++, order++) {
01347         bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[indx], error_scale) * (FLAC__double)(total_samples - order) + (FLAC__double)(order * overhead_bits_per_order);
01348         if(bits < best_bits) {
01349             best_index = indx;
01350             best_bits = bits;
01351         }
01352     }
01353 
01354     return best_index+1; /* +1 since indx of lpc_error[] is order-1 */
01355 }
01356 
01357 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */