RealtimeCompLab2
Dependencies: mbed
Fork of PPP-Blinky by
main.cpp
- Committer:
- nixnax
- Date:
- 2017-01-01
- Revision:
- 14:c65831c25aaa
- Parent:
- 13:d882b8a042b4
- Child:
- 15:b0154c910143
File content as of revision 14:c65831c25aaa:
#include "mbed.h" // Copyright 2016 Nicolas Nackel. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // Proof-of-concept for TCP/IP using Windows 7/8/10 Dial Up Networking over MBED USB Virtual COM Port // Toggles LED1 every time the PC sends an IP packet over the PPP link // Note - turn off all authentication, passwords, compression etc. Simplest link possible. // Handy links // http://atari.kensclassics.org/wcomlog.htm // https://technet.microsoft.com/en-us/library/cc957992.aspx // http://www.sunshine2k.de/coding/javascript/crc/crc_js.html // https://en.wikibooks.org/wiki/Serial_Programming/IP_Over_Serial_Connections Serial pc(USBTX, USBRX); // The USB com port - Set this up as a Dial-Up Modem on your pc Serial xx(PC_10, PC_11); // debug port - use an additional USB serial port to monitor this #define debug(x) xx.printf( x ) DigitalOut led1(LED1); #define FRAME_7E (0x7e) #define BUFLEN (1<<13) char rxbuf[BUFLEN]; char frbuf[3000]; // buffer for ppp frame struct { int online; struct { char * buf; int head; int tail; int total; } rx; // serial port buffer struct { int id; int len; int crc; char * buf; } pkt; // ppp buffer } ppp; void pppInitStruct(){ ppp.online=0; ppp.rx.buf=rxbuf; ppp.rx.tail=0; ppp.rx.head=0; ppp.rx.total=0; ppp.pkt.buf=frbuf; ppp.pkt.len=0;} int crcG; // frame check sequence (CRC) holder void crcDo(int x){for (int i=0;i<8;i++){crcG=((crcG&1)^(x&1))?(crcG>>1)^0x8408:crcG>>1;x>>=1;}} // crc calculator void crcReset(){crcG=0xffff;} // crc restart int crcBuf(char * buf, int size){crcReset();for(int i=0;i<size;i++)crcDo(*buf++);return crcG;} // crc on a block of memory void rxHandler() // serial port receive interrupt handler { ppp.rx.buf[ppp.rx.head]=pc.getc(); // insert in buffer __disable_irq(); ppp.rx.head=(ppp.rx.head+1)&(BUFLEN-1); ppp.rx.total++; __enable_irq(); } int ledState=0; void led1Toggle(){ ledState = ledState? 0 : 1; led1 = ledState; } int pc_readable() // check if buffer has data { return (ppp.rx.head==ppp.rx.tail) ? 0 : 1 ; } int pc_getBuf() // get one character from the buffer { if (pc_readable()) { int x = ppp.rx.buf[ ppp.rx.tail ]; ppp.rx.tail=(ppp.rx.tail+1)&(BUFLEN-1); return x; } return -1; } void scanForConnectString(); // scan for connect attempts from pc void processFrame(int start, int end) { // process received frame led1Toggle(); // change led1 state when frames are received if(start==end) { xx.printf("Null Frame c=%d\n",ppp.rx.total); pc.putc(0x7e); return; } crcReset(); char * dest = ppp.pkt.buf; ppp.pkt.len=0; int unstuff=0; for (int i=start; i<end; i++) { if (unstuff==0) { if (rxbuf[i]==0x7d) unstuff=1; else { *dest++ = rxbuf[i]; ppp.pkt.len++; crcDo(rxbuf[i]);} } else { // unstuff *dest++ = rxbuf[i]^0x20; ppp.pkt.len++; crcDo((int)rxbuf[i]^0x20); unstuff=0; } } ppp.pkt.crc = crcG & 0xffff; if (ppp.pkt.crc == 0xf0b8) { // check for good CRC void determinePacketType(); // declare early determinePacketType(); } else { // crc error xx.printf("CRC is %x Len is %d\n",ppp.pkt.crc,ppp.pkt.len); for(int i=0;i<ppp.pkt.len;i++)xx.printf("%02x ", ppp.pkt.buf[i]); xx.printf("\n"); } } void dumpFrame() { for(int i=0;i<ppp.pkt.len/2;i++) xx.printf("%02x ", ppp.pkt.buf[i]); xx.printf(" C %02x %02x L=%d\n", ppp.pkt.crc&0xff, (ppp.pkt.crc>>8)&0xff, ppp.pkt.len); } void sendFrame(){ int crc = crcBuf(ppp.pkt.buf, ppp.pkt.len-2); // get crc ppp.pkt.buf[ ppp.pkt.len-2 ] = (~crc>>0); // fcs lo (crc) ppp.pkt.buf[ ppp.pkt.len-1 ] = (~crc>>8); // fcs hi (crc) pc.putc(0x7e); // frame start flag for(int i=0;i<ppp.pkt.len;i++) { //xx.printf( "%2x ", ppp.pkt.buf[i]); unsigned int cc = (unsigned int)ppp.pkt.buf[i]; if (cc>32) pc.putc(cc); else {pc.putc(0x7d); pc.putc(cc+32);} } pc.putc(0x7e); // frame end flag } void ipRequestHandler(){ debug("IPCP Conf "); if ( ppp.pkt.buf[7] != 4 ) { debug("Rej\n"); // reject if any options are requested ppp.pkt.buf[4]=4; sendFrame(); } else { debug("Ack\n"); ppp.pkt.buf[4]=2; // ack the minimum sendFrame(); // acknowledge debug("IPCP Ask\n"); // send our own request now ppp.pkt.buf[4]=1; // request no options ppp.pkt.buf[5]++; // next sequence sendFrame(); // this is our request } } void ipAckHandler(){ debug("IPCP Grant\n"); } void ipNackHandler(){ debug("IPCP Nack\n"); } void ipDefaultHandler(){ debug("IPCP Other\n"); } void IPCPframe() { //ppp.pkt.id = ppp.pkt.buf[5]; // remember the sequence number int code = ppp.pkt.buf[4]; // packet type is here switch (code) { case 1: ipRequestHandler(); break; case 2: ipAckHandler(); break; case 3: ipNackHandler(); break; default: ipDefaultHandler(); } } void UDPpacket() { char * udpPkt = ppp.pkt.buf+4; // udp packet start //char * pktLen = udpPkt+2; // total packet length int headerSize = (( udpPkt[0]&0xf)*4); char * udpBlock = udpPkt + headerSize; // udp info start char * udpSrc = udpBlock; // source port char * udpDst = udpBlock+2; // destination port char * udpLen = udpBlock+4; // udp data length char * udpInf = udpBlock+8; // actual start of info //char * udpSum = udpBlock+6; // udp checksum //int packetLength = (pktLen[0]<<8) | pktLen[1]; // udp total packet length int srcPort = (udpSrc[0]<<8) | udpSrc[1]; int dstPort = (udpDst[0]<<8) | udpDst[1]; char * srcIP = udpPkt+12; // udp src addr char * dstIP = udpPkt+16; // udp dst addr #define UDP_HEADER_SIZE 8 int udpLength = ((udpLen[0]<<8) | udpLen[1]) - UDP_HEADER_SIZE; // size of the actual udp data xx.printf("UDP %d.%d.%d.%d:%d ", srcIP[0],srcIP[1],srcIP[2],srcIP[3],srcPort); xx.printf("%d.%d.%d.%d:%d ", dstIP[1],dstIP[1],dstIP[1],dstIP[1],dstPort); xx.printf("Len %d ", udpLength); int printSize = udpLength; if (printSize > 20) printSize = 20; // print only first 20 characters for (int i=0; i<printSize; i++) { char ch = udpInf[i]; if (ch>31 && ch<127) xx.putc(ch); else xx.putc('?'); } xx.printf("\n"); } int dataCheckSum(char * ptr, int len) { int sum=0; for (int i=0;i<len/2;i++) { int hi = *ptr; ptr++; int lo = *ptr; ptr++; int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 ); sum = sum + val; } sum = sum + (sum>>16); return ~sum; } void headerCheckSum() { int len =(ppp.pkt.buf[4]&0xf)*4; // length of header in bytes char * ptr = ppp.pkt.buf+4; // start of ip packet int sum=0; for (int i=0;i<len/2;i++) { int hi = *ptr; ptr++; int lo = *ptr; ptr++; int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 ); sum = sum + val; } sum = sum + (sum>>16); sum = ~sum; ppp.pkt.buf[14]= (sum>>8); ppp.pkt.buf[15]= (sum ); } void ICMPpacket() { // internet control message protocol char * ipPkt = ppp.pkt.buf+4; // ip packet start char * pktLen = ipPkt+2; int packetLength = (pktLen[0]<<8) | pktLen[1]; // icmp packet length int headerSize = (( ipPkt[0]&0xf)*4); char * icmpType = ipPkt + headerSize; // icmp data start char * icmpSum = icmpType+2; // icmp checksum #define ICMP_TYPE_PING_REQUEST 8 if ( icmpType[0] == ICMP_TYPE_PING_REQUEST ) { char * ipTTL = ipPkt+8; // time to live ipTTL[0]--; // decrement time to live char * srcAdr = ipPkt+12; char * dstAdr = ipPkt+16; xx.printf("ICMP PING %d.%d.%d.%d %d.%d.%d.%d ", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3],dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); char src[4]; char dst[4]; memcpy(src, srcAdr,4); memcpy(dst, dstAdr,4); memcpy(srcAdr, dst,4); memcpy(dstAdr, src,4); // swap src & dest ip char * chkSum = ipPkt+10; chkSum[0]=0; chkSum[1]=0; headerCheckSum(); // new ip header checksum #define ICMP_TYPE_ECHO_REPLY 0 icmpType[0]=ICMP_TYPE_ECHO_REPLY; // icmp echo replay icmpSum[0]=0; icmpSum[1]=0; // zero the checksum for recalculation int dataLength = packetLength - headerSize; // length of ICMP data portion int sum = dataCheckSum( icmpType, dataLength); // this checksum on icmp data portion icmpSum[0]=sum>>8; icmpSum[1]=sum; // new checksum for ICMP data portion sendFrame(); // reply to the ping int printSize = dataLength-8; // exclude size of icmp header char * icmpData = icmpType+8; // the actual data is after the header if (printSize > 20) printSize = 20; // print only first 20 characters for (int i=0; i<printSize; i++) { char ch = icmpData[i]; if (ch>31 && ch<127) xx.putc(ch); else xx.putc('?'); } xx.putc('\n'); } else { xx.printf("ICMP type=%d \n", icmpType[0]); } } void IGMPpacket() { // internet group management protocol xx.printf("IGMP type=%d \n", ppp.pkt.buf[28]); } void TCPpacket() { debug("TCP\n"); /* switch (protocol) { case 2: TCPsyn(); break; case 17: TCPack(); break; case 6: TCPpacket(); break; default: debug( "Other \n"); } */ } void otherProtocol() { debug("Other IP protocol"); } void IPframe() { int protocol = ppp.pkt.buf[13]; switch (protocol) { case 1: ICMPpacket(); break; case 2: IGMPpacket(); break; case 17: UDPpacket(); break; case 6: TCPpacket(); break; default: otherProtocol(); } //xx.printf("IP frame proto %3d len %4d %d.%d.%d.%d %d.%d.%d.%d\n", ppp.pkt.buf[13],(ppp.pkt.buf[6]<<8)+ppp.pkt.buf[7],ppp.pkt.buf[16],ppp.pkt.buf[17],ppp.pkt.buf[18],ppp.pkt.buf[19],ppp.pkt.buf[20],ppp.pkt.buf[21],ppp.pkt.buf[22],ppp.pkt.buf[23] ); } void LCPconfReq() { debug("LCP Config "); if (ppp.pkt.buf[7] != 4) { ppp.pkt.buf[4]=4; // allow only no options debug("Reject\n"); sendFrame(); } else { ppp.pkt.buf[4]=2; // ack zero conf debug("Ack\n"); sendFrame(); debug("LCP Ask\n"); ppp.pkt.buf[4]=1; // request no options sendFrame(); } } void LCPconfAck() { debug("LCP Ack\n"); } void LCPend(){ debug("LCP End\n"); ppp.online=0; // start hunting for connect string again ppp.pkt.buf[4]=6; sendFrame(); // acknowledge } void LCPother(){ debug("LCP Other\n"); dumpFrame(); } void LCPframe(){ int code = ppp.pkt.buf[4]; switch (code) { case 1: LCPconfReq(); break; // config request case 2: LCPconfAck(); break; // config ack case 5: LCPend(); break; // end connection default: LCPother(); } } void discardedFrame() { xx.printf("Dropping frame %02x %02x %02x %02x\n", ppp.pkt.buf[0],ppp.pkt.buf[1],ppp.pkt.buf[2],ppp.pkt.buf[3] ); } void determinePacketType() { if ( ppp.pkt.buf[0] != 0xff ) {debug("byte0 != ff\n"); return;} if ( ppp.pkt.buf[1] != 3 ) {debug("byte1 != 3\n"); return;} if ( ppp.pkt.buf[3] != 0x21 ) {debug("byte2 != 21\n"); return;} int packetType = ppp.pkt.buf[2]; switch (packetType) { case 0xc0: LCPframe(); break; // link control case 0x80: IPCPframe(); break; // IP control case 0x00: IPframe(); break; // IP itself default: discardedFrame(); } } void scanForConnectString() { if ( ppp.online==0 ) { char * clientFound = strstr( rxbuf, "CLIENTCLIENT" ); // look for PC string if( clientFound ) { strcpy( clientFound, "FOUND!FOUND!" ); // overwrite so we don't get fixated pc.printf("CLIENTSERVER"); // respond to PC ppp.online=1; // we can stop looking for the string debug("Connect string found\n"); } } } int main() { pc.baud(115200); // USB virtual serial port xx.baud(115200); // second serial port for debug messages xx.puts("\x1b[2J\x1b[HReady\n"); // VT100 code for clear screen & home pppInitStruct(); // initialize all the PPP properties pc.attach(&rxHandler,Serial::RxIrq); // start the receive handler int frameStartIndex, frameEndIndex; int frameBusy=0; while(1) { if ( ppp.online==0 ) scanForConnectString(); // try to connect while ( pc_readable() ) { int rx = pc_getBuf(); if (frameBusy) { if (rx==FRAME_7E) { frameBusy=0; // done gathering frame frameEndIndex=ppp.rx.tail-1; // remember where frame ends processFrame(frameStartIndex, frameEndIndex); } } else { if (rx==FRAME_7E) { frameBusy=1; // start gathering frame frameStartIndex=ppp.rx.tail; // remember where frame started } } } } }