RealtimeCompLab2

Dependencies:   mbed

Fork of PPP-Blinky by Nicolas Nackel

main.cpp

Committer:
nixnax
Date:
2017-01-29
Revision:
52:accc3026b2b0
Parent:
50:ad4e7c3c88e5
Child:
53:3a8a37fda757

File content as of revision 52:accc3026b2b0:

#include "mbed.h"

// Copyright 2016 Nicolas Nackel aka Nixnax. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

// PPP-Blinky - "My Internet Of Thing"
// A Tiny Webserver Using Windows XP/7/8/10 Networking Over A Serial Port.

// Also receives UDP packets and responds to ping (ICMP Echo requests)

// Notes and Instructions
// http://bit.ly/PPP-Blinky-Instructions

// Handy reading material
// https://technet.microsoft.com/en-us/library/cc957992.aspx
// https://en.wikibooks.org/wiki/Serial_Programming/IP_Over_Serial_Connections
// http://bit.ly/dialup777error - how to solve Dial Up Error 777 in Windows 7/8/10
// http://atari.kensclassics.org/wcomlog.htm

// Handy tools
// https://ttssh2.osdn.jp/index.html.en - Tera Term, a good terminal program to monitor the debug output from the second serial port with!
// Wireshark - can't monitor Dial-Up network packets on windows, but useful - can import our dumpFrame routine's hex output
// Microsoft network monitor - real-time monitoring of all our packets
// http://pingtester.net/ - nice tool for high rate ping testing
// http://www.sunshine2k.de/coding/javascript/crc/crc_js.html - Correctly calculates the 16-bit FCS (crc) on our frames (Choose CRC16_CCITT_FALSE)
// The curl.exe program in Windows Powershell - use it like this to stress test the webserver: while (1) { curl 172.10.10.1 }
// https://technet.microsoft.com/en-us/sysinternals/pstools.aspx - psping for fast testing of ICMP ping function
// https://eternallybored.org/misc/netcat/ - use netcat -u 172.10.10.1 80 to send/receive UDP packets from PPP-Blinky

// The #define below enables/disables a second serial port that prints out interesting diagnostic messages.
// change to SERIAL_PORT_MONITOR_YES to enable diagnistics messages. You will also need a second serial port.
#define SERIAL_PORT_MONITOR_NO /* or SERIAL_PORT_MONITOR_YES */

#ifndef SERIAL_PORT_MONITOR_NO
Serial xx(PC_10, PC_11); // Not necessary to run - if you have a compile error here change line 31 to SERIAL_PORT_MONITOR_NO
#define debug(x...) xx.printf (x)
#else
// no debug monitoring
#define debug(x...) {}
#endif

Serial pc(USBTX, USBRX); // The serial port on your mbed hardware. Your PC thinks this is a dial-up modem.

int v0=1;
int v1=1; // verbosity flags used in debug printouts - change to 1/0 to see more/less debug info

DigitalOut led1(LED1); // this led toggles when a packet is received

// the standard hdlc frame start/end character
#define FRAME_7E (0x7e)

// the serial port receive buffer and packet buffer
#define BUFLEN (1<<12)
char rxbufppp[BUFLEN]; // BUFLEN must be a power of two because we use & operator for fast wrap-around in rxHandler
char hdlcBuffer[2000]; // send/receive buffer for hdlc frames

// a structure to keep all our ppp globals in


struct pppType {
    int online; // we hunt for a PPP connection if this is zero
    int ident; // our IP ident value
    unsigned int seq; // our TCP sequence number
    int crc; // for calculating IP and TCP CRCs
    int ledState; // state of LED1
    struct {
        char * buf;
        volatile int head;
        volatile int tail;
    } rx; // serial port objects
    struct {
        int len; // number of bytes in buffer
        int crc; // PPP CRC (frame check)
        char * buf; // the actual buffer
    } pkt; // ppp buffer objects
    struct {
        int frameStartIndex; // frame start marker
        int frameEndIndex; // frame end marker
        int frameBusy; // busy capturing a frame
    } hdlc; // hdlc frame objects
};

pppType ppp; // our global - definitely not thread safe

// intitialize our globals
void pppInitStruct()
{
    ppp.online=0;
    ppp.rx.buf=rxbufppp;
    ppp.rx.tail=0;
    ppp.rx.head=0;
    ppp.pkt.buf=hdlcBuffer;
    ppp.pkt.len=0;
    ppp.ident=0;
    ppp.seq=1000;
    ppp.ledState=0;
    ppp.hdlc.frameBusy=0;
}

void led1Toggle()
{
    ppp.ledState = ppp.ledState? 0 : 1;
    led1 = ppp.ledState;
}

void crcReset()
{
    ppp.crc=0xffff;   // crc restart
}

void crcDo(int x) // cumulative crc
{
    for (int i=0; i<8; i++) {
        ppp.crc=((ppp.crc&1)^(x&1))?(ppp.crc>>1)^0x8408:ppp.crc>>1; // crc calculator
        x>>=1;
    }
}

int crcBuf(char * buf, int size) // crc on an entire block of memory
{
    crcReset();
    for(int i=0; i<size; i++)crcDo(*buf++);
    return ppp.crc;
}

void rxHandler() // serial port receive interrupt handler
{
    while ( pc.readable() ) {
        int hd = (ppp.rx.head+1)&(BUFLEN-1); // increment/wrap
        if ( hd == ppp.rx.tail ) break; // watch for buffer full
        ppp.rx.buf[ppp.rx.head]=pc.getc(); // insert in rx buffer
        ppp.rx.head = hd; // update head pointer
    }
}

int rxbufNotEmpty() // check if rx buffer has data
{
    __disable_irq(); // critical section start
    int emptyStatus = (ppp.rx.head==ppp.rx.tail) ? 0 : 1 ;
    __enable_irq(); // critical section end
    return emptyStatus;
}

int pc_getBuf() // get one character from the buffer
{
    if ( rxbufNotEmpty() ) {
        int x = ppp.rx.buf[ ppp.rx.tail ];
        __disable_irq(); // critical section start
        ppp.rx.tail=(ppp.rx.tail+1)&(BUFLEN-1);
        __enable_irq(); // critical section end
        return x;
    } else return -1;
}

void processHDLCFrame(int start, int end)   // process received frame
{
    led1Toggle(); // change led1 state on every frame we receive
    if(start==end) {
        pc.putc(0x7e);
        return;
    }
    crcReset();
    char * dest = ppp.pkt.buf;
    ppp.pkt.len=0;
    int unstuff=0;
    int idx = start;
    while(1) {
        if (unstuff==0) {
            if (rxbufppp[idx]==0x7d) unstuff=1;
            else {
                *dest = rxbufppp[idx];
                ppp.pkt.len++;
                dest++;
                crcDo(rxbufppp[idx]);
            }
        } else { // unstuff
            *dest = rxbufppp[idx]^0x20;
            ppp.pkt.len++;
            dest++;
            crcDo(rxbufppp[idx]^0x20);
            unstuff=0;
        }
        idx = (idx+1) & (BUFLEN-1);
        if (idx == end) break;
    }
    ppp.pkt.crc = ppp.crc & 0xffff;
    if (ppp.pkt.crc == 0xf0b8) { // check for good CRC
        void determinePacketType(); // declaration only
        determinePacketType();
    } else if (v0) {
        debug("PPP FCS(crc) Error CRC=%x Length = %d\n",ppp.pkt.crc,ppp.pkt.len);
    }
}

// Note - the hex output of dumpFrame() can be imported into WireShark
// Capture the frame's hex output in your terminal program and save as a text file
// In WireShark, use "Import Hex File". Options are: Offset=None, Protocol=PPP.
void dumpFrame()
{
    for(int i=0; i<ppp.pkt.len; i++) debug("%02x ", ppp.pkt.buf[i]);
    debug(" C=%02x %02x L=%d\n", ppp.pkt.crc&0xff, (ppp.pkt.crc>>8)&0xff, ppp.pkt.len);
}

void hdlcPut(int ch)   // do hdlc handling of special (flag) characters
{
    if ( (ch<0x20) || (ch==0x7d) || (ch==0x7e) ) {
        pc.putc(0x7d);
        pc.putc(ch^0x20);  // three characters need special handling
    } else {
        pc.putc(ch);
    }
}

void sendFrame() // send one PPP frame in HDLC format
{
    int crc = crcBuf(ppp.pkt.buf, ppp.pkt.len-2); // update crc
    ppp.pkt.buf[ ppp.pkt.len-2 ] = (~crc>>0); // fcs lo (crc)
    ppp.pkt.buf[ ppp.pkt.len-1 ] = (~crc>>8); // fcs hi (crc)
    pc.putc(0x7e); // hdlc start-of-frame "flag"
    for(int i=0; i<ppp.pkt.len; i++) hdlcPut( ppp.pkt.buf[i] );
    pc.putc(0x7e); // hdlc end-of-frame "flag"
}

void ipRequestHandler()
{
    debug(("IPCP Conf "));
    if ( ppp.pkt.buf[7] != 4 ) {
        debug(("Rej\n")); // reject if any options are requested
        ppp.pkt.buf[4]=4;
        sendFrame();
    } else  {
        debug(("Ack\n"));
        ppp.pkt.buf[4]=2; // ack the minimum
        sendFrame(); // acknowledge
        debug(("IPCP Ask\n"));
        // send our own request now
        ppp.pkt.buf[4]=1; // request no options
        ppp.pkt.buf[5]++; // next sequence
        sendFrame(); // this is our request
    }
}

void ipAckHandler()
{
    debug(("IPCP Grant\n"));
}

void ipNackHandler()
{
    debug(("IPCP Nack\n"));
}

void ipDefaultHandler()
{
    debug(("IPCP Other\n"));
}

void IPCPframe()
{
    int code = ppp.pkt.buf[4]; // packet type is here
    switch (code) {
        case 1:
            ipRequestHandler();
            break;
        case 2:
            ipAckHandler();
            break;
        case 3:
            ipNackHandler();
            break;
        default:
            ipDefaultHandler();
    }
}

void UDPpacket()
{
    char * udpPkt = ppp.pkt.buf+4; // udp packet start
    int headerSizeIP = (( udpPkt[0]&0xf)*4);
    char * udpBlock = udpPkt + headerSizeIP; // udp info start
    char * udpSrc = udpBlock; // source port
    char * udpDst = udpBlock+2; // destination port
    char * udpLen = udpBlock+4; // udp data length
    char * udpInf = udpBlock+8; // actual start of info
    int srcPort = (udpSrc[0]<<8) | udpSrc[1];
    int dstPort = (udpDst[0]<<8) | udpDst[1];
    char * srcIP = udpPkt+12; // udp src addr
    char * dstIP = udpPkt+16; // udp dst addr
#define UDP_HEADER_SIZE 8
    int udpLength = ((udpLen[0]<<8) | udpLen[1]) - UDP_HEADER_SIZE; // size of the actual udp data
    if(v1) debug("UDP %d.%d.%d.%d:%d ", srcIP[0],srcIP[1],srcIP[2],srcIP[3],srcPort);
    if(v1) debug("%d.%d.%d.%d:%d ",    dstIP[1],dstIP[1],dstIP[1],dstIP[1],dstPort);
    debug("Len %d ", udpLength);
    int printSize = udpLength;
    if (printSize > 20) printSize = 20; // print only first 20 characters
    if (v0) {
        for (int i=0; i<printSize; i++) {
            char ch = udpInf[i];
            if (ch>31 && ch<127) {
                debug("%c", ch);
            } else {
                debug(("_"));
            }
        }
        debug(("\n"));
    }
}

int dataCheckSum(char * ptr, int len)
{
    int sum=0;
    int placeHolder;
    if (len&1) {
        placeHolder = ptr[len-1];    // when length is odd stuff in a zero byte
        ptr[len-1]=0;
    }
    for (int i=0; i<len/2; i++) {
        int hi = *ptr;
        ptr++;
        int lo = *ptr;
        ptr++;
        int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 );
        sum = sum + val;
    }
    sum = sum + (sum>>16);
    if (len&1) {
        ptr[len-1] = placeHolder;    // restore the last byte for odd lengths
    }
    return ~sum;
}

void headerCheckSum()
{
    int len =(ppp.pkt.buf[4]&0xf)*4; // length of header in bytes
    char * ptr = ppp.pkt.buf+4; // start of ip packet
    int sum=0;

    for (int i=0; i<len/2; i++) {
        int hi = *ptr;
        ptr++;
        int lo = *ptr;
        ptr++;
        int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 );
        sum = sum + val;
    }
    sum = sum + (sum>>16);
    sum = ~sum;
    ppp.pkt.buf[14]= (sum>>8);
    ppp.pkt.buf[15]= (sum   );
}

void ICMPpacket()   // internet control message protocol
{
    char * ipPkt = ppp.pkt.buf+4; // ip packet start
    char * pktLen = ipPkt+2;
    int packetLength = (pktLen[0]<<8) | pktLen[1]; // icmp packet length
    int headerSizeIP = (( ipPkt[0]&0xf)*4);
    char * icmpType = ipPkt + headerSizeIP; // icmp data start
    char * icmpSum = icmpType+2; // icmp checksum
#define ICMP_TYPE_PING_REQUEST 8
    if ( icmpType[0] == ICMP_TYPE_PING_REQUEST ) {
        char * ipTTL = ipPkt+8; // time to live
        ipTTL[0]--; // decrement time to live
        char * srcAdr = ipPkt+12;
        char * dstAdr = ipPkt+16;
        int icmpIdent = (icmpType[4]<<8)|icmpType[5];
        int icmpSequence = (icmpType[6]<<8)|icmpType[7];
        debug("ICMP PING %d.%d.%d.d %d.%d.%d.%d ", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3],dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]);
        debug("Ident %04x Sequence %04d ",icmpIdent,icmpSequence);
        char src[4];
        char dst[4];
        memcpy(src, srcAdr,4);
        memcpy(dst, dstAdr,4);
        memcpy(srcAdr, dst,4);
        memcpy(dstAdr, src,4); // swap src & dest ip
        char * chkSum = ipPkt+10;
        chkSum[0]=0;
        chkSum[1]=0;
        headerCheckSum();  // new ip header checksum
#define ICMP_TYPE_ECHO_REPLY 0
        icmpType[0]=ICMP_TYPE_ECHO_REPLY; // icmp echo reply
        icmpSum[0]=0;
        icmpSum[1]=0; // zero the checksum for recalculation
        int icmpLength = packetLength - headerSizeIP; // length of ICMP data portion
        int sum = dataCheckSum( icmpType, icmpLength); // this checksum on icmp data portion
        icmpSum[0]=sum>>8;
        icmpSum[1]=sum; // new checksum for ICMP data portion

        int printSize = icmpLength-8; // exclude size of icmp header
        char * icmpData = icmpType+8; // the actual payload data is after the header
        if (printSize > 10) printSize = 10; // print up to 20 characters
        if (v0) {
            for (int i=0; i<printSize; i++) {
                char ch = icmpData[i];
                if (ch>31 && ch<127) {
                    debug("%c",ch);
                } else {
                    debug(("_"));
                }
            }
            debug(("\n"));
        }
        sendFrame(); // reply to the ping

    } else {
        if (v0) {
            debug("ICMP type=%d \n", icmpType[0]);
        }
    }
}

void IGMPpacket()   // internet group management protocol
{
    if (v0) {
        debug("IGMP type=%d \n", ppp.pkt.buf[28]);
    }
}

void dumpHeaderIP ()
{
    char * ipPkt = ppp.pkt.buf+4; // ip packet start
    char * version =    ipPkt; // top 4 bits
    char * ihl =        ipPkt; // bottom 4 bits
    char * dscp =       ipPkt+1; // top 6 bits
    char * ecn =        ipPkt+1; // lower 2 bits
    char * pktLen =     ipPkt+2; // 2 bytes
    char * ident =      ipPkt+4; // 2 bytes
    char * flags =      ipPkt+6; // 2 bits
    char * ttl =        ipPkt+8; // 1 byte
    char * protocol =   ipPkt+9; // 1 byte
    char * headercheck= ipPkt+10; // 2 bytes
    char * srcAdr =     ipPkt+12; // 4 bytes
    char * dstAdr =     ipPkt+16; // 4 bytes = total of 20 bytes

    int versionIP = (version[0]>>4)&0xf;
    int headerSizeIP = (ihl[0]&0xf)*4;
    int dscpIP = (dscp[0]>>2)&0x3f;
    int ecnIP = ecn[0]&3;
    int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length
    int identIP = (ident[0]<<8)|ident[1];
    int flagsIP = flags[0]>>14&3;
    int ttlIP = ttl[0];
    int protocolIP = protocol[0];
    int checksumIP = (headercheck[0]<<8)|headercheck[1];
    char srcIP [16];
    snprintf(srcIP,16, "%d.%d.%d.%d", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3]);
    char dstIP [16];
    snprintf(dstIP,16, "%d.%d.%d.%d", dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]);
    if (v0) debug("IP %s %s v%d h%d d%d e%d L%d ",srcIP,dstIP,versionIP,headerSizeIP,dscpIP,ecnIP,packetLength);
    if (v0) debug("i%04x f%d t%d p%d C%04x\n",identIP,flagsIP,ttlIP,protocolIP,checksumIP);
}

void dumpHeaderTCP()
{
    int headerSizeIP     = (ppp.pkt.buf[4]&0xf)*4; // header size of ip portion
    char * tcpStart      =  ppp.pkt.buf+4+headerSizeIP; // start of tcp packet
    char * seqtcp        = tcpStart + 4;  // 4 bytes
    char * acktcp        = tcpStart + 8;  // 4 bytes
    char * flagbitstcp   = tcpStart + 12; // 9 bits
    unsigned int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]);
    unsigned int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]);
    int flags = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1];

    char flagInfo[10];
    memset(flagInfo,'.',10); // text presentation of TCP flags
    if (flags & (1<<0)) flagInfo[0]='F';
    if (flags & (1<<1)) flagInfo[1]='S';
    if (flags & (1<<2)) flagInfo[2]='R';
    if (flags & (1<<3)) flagInfo[3]='P';
    if (flags & (1<<4)) flagInfo[4]='A';
    if (flags & (1<<5)) flagInfo[5]='U';
    if (flags & (1<<6)) flagInfo[6]='E';
    if (flags & (1<<7)) flagInfo[7]='C';
    if (flags & (1<<8)) flagInfo[8]='N';
    flagInfo[9]=0; // null terminate string
    if (v0) {
        debug("Flags %s Seq %u Ack %u", flagInfo, seq, ack);
    }
}

void tcpHandler()
{
    char * ipPkt = ppp.pkt.buf+4; // ip packet start
    char * headercheck= ipPkt+10; // 2 bytes
    char * ihl =        ipPkt;    // bottom 4 bits
    char * ident =      ipPkt+4;  // 2 bytes
    char * pktLen =     ipPkt+2;  // 2 bytes
    char * protocol =   ipPkt+9;  // 1 byte
    char * srcAdr =     ipPkt+12; // 4 bytes
    char * dstAdr =     ipPkt+16; // 4 bytes = total of 20 bytes
    int headerSizeIP = (ihl[0]&0xf)*4;
    int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length

    ident[0] = ppp.ident>>8;
    ident[1] = ppp.ident>>0; // insert OUR ident

    char * s             = ppp.pkt.buf+4+headerSizeIP; // start of tcp packet
    char * srctcp        = s + 0;  // 2 bytes
    char * dsttcp        = s + 2;  // 2 bytes
    char * seqtcp        = s + 4;  // 4 bytes
    char * acktcp        = s + 8;  // 4 bytes
    char * offset        = s + 12; // 4 bits
    char * flagbitstcp   = s + 12; // 9 bits
    char * checksumtcp   = s + 16; // 2 bytes

    int tcpSize = packetLength - headerSizeIP;
    int headerSizeTCP = ((offset[0]>>4)&0x0f)*4; // size of tcp header only

    unsigned int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]);
    unsigned int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]);

    int flagsTCP = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1];

    char * dataStart = ppp.pkt.buf + 4 + headerSizeIP + headerSizeTCP; // start of data block after TCP header
    int incomingLen = tcpSize - headerSizeTCP; // size of data block after TCP header

#define TCP_FLAG_ACK (1<<4)
#define TCP_FLAG_SYN (1<<1)
#define TCP_FLAG_PSH (1<<3)
#define TCP_FLAG_RST (1<<2)
#define TCP_FLAG_FIN (1<<0)

    // A sparse TCP flag interpreter that implements simple TCP connections from a single source
    // Clients are allowed ONE push packet, after which the link is closed with a FIN flag in the ACK packet
    // This strategy allows web browsers, netcat and curl to work ok while keeping the state machine simple

    int dataLen = 0; // most of our responses will have zero TCP data, only a header
    int flagsOut = TCP_FLAG_ACK; // the default case is an ACK packet
    int fastResponse = 0; // normally you wait 200ms before sending a packet but this can make it faster

    if (ppp.seq != ack) {
        ppp.seq = ack;    // if their sequence number is different than our calculation we adopt their version
    }

    if ( ((flagsTCP & ~TCP_FLAG_ACK) == 0) && ((flagsTCP & TCP_FLAG_ACK) != 0) ) {
        if (incomingLen == 0) { // ignore - just an empty ack packet
            return;
        }
    } else if ( (flagsTCP & TCP_FLAG_SYN) != 0 ) { // got SYN flag
        flagsOut = TCP_FLAG_SYN | TCP_FLAG_ACK; // do a syn-ack
        seq++; // for SYN flag we have to increase sequence by 1
    } else if ( (flagsTCP & TCP_FLAG_FIN) != 0 ) { // got FIN flag
        seq++; // for FIN flag we have to increase sequence by 1
    } else if ( (flagsTCP & TCP_FLAG_PSH) != 0 ) { // got PSH flag (push)
        flagsOut = TCP_FLAG_ACK | TCP_FLAG_FIN; // for every push we answer once AND close the link
        fastResponse = 1; // we can respond fast to a push
        // It's a push, so let's check the incoming data for an HTTP GET request
        if ( strncmp(dataStart, "GET / HTTP/1.1", 14) == 0) {
            dataLen = 32*32; // this block has to hold the web page below, but keep it under 1024 or increase this
            memset(dataStart,'x', dataLen ); // initialize the data block

            int n=0; // number of bytes we have printed so far
            n=n+sprintf(n+dataStart,"HTTP/1.1 200 OK\r\nServer: PPP-Blinky\r\n"); // http header
            n=n+sprintf(n+dataStart,"Content-Length: "); // http header
            int contentLengthStart = n; // remember where Content-Length is in buffer
            n=n+sprintf(n+dataStart,"?????\r\n"); // leave five spaces for content length - will be updated later
            n=n+sprintf(n+dataStart,"Content-Type: text/html; charset=us-ascii\r\n\r\n"); // http header must end with empty line (\r\n)
            int nHeader=n; // byte total of all headers. Note - seems like this must be 1+(multiple of four)

            n=n+sprintf(n+dataStart,"<!DOCTYPE html>\n<html><head><title>mbed-PPP-Blinky</title>\n<script>window.onload=function()"); // html start
            n=n+sprintf(n+dataStart,"{setInterval(function(){function x(){return document.getElementById('w');};\n"); // html
            n=n+sprintf(n+dataStart,"x().textContent = parseInt(x().textContent)+1;},100);};</script></head>\n"); // html
            n=n+sprintf(n+dataStart,"<body style=\"font-family: sans-serif; font-size:30px; color:#807070\">"); // html
            n=n+sprintf(n+dataStart,"<h1>mbed PPP-Blinky Up and Running</h1>\n<h1 id=\"w\" style=\"text-align:"); // html
            n=n+sprintf(n+dataStart," center;\">0</h1><h1><a href=\"http://bit.ly/pppBlink2\">Source on mbed</a></h1>\n</body></html>\r\n"); // html end

            int contentLength = n-nHeader; // Content-Length is the count of every character after the header
            int cSize = 5; // maximum number of digits we allow for Content-Length
            char contentLengthString[cSize+1]; // temporary buffer to create Content-Length string
            snprintf(contentLengthString,cSize+1,"%*d",cSize,contentLength); // print Content-Length with leading spaces and fixed width = csize
            memcpy(dataStart+contentLengthStart, contentLengthString, cSize); // copy Content-Length to the send buffer

            if (v0) {
                debug("HTTP GET BufferSize %d*32=%d Header %d Content-Length %d Total %d Available %d\n",dataLen/32,dataLen,nHeader,contentLength,n,dataLen-n);
            }
            dataLen=n; // update the buffer size
        } else if ( strncmp(dataStart, "GET /", 4) == 0) { // all other HTTP GET requests get 404 Not Found response
            dataLen = 32*32; // maximum size for File not found webpage
            memset(dataStart,'x', dataLen ); // initialize the data block

            int n=0; // number of bytes we have printed so far
            n=n+sprintf(n+dataStart,"HTTP/1.1 404 Not Found\r\nServer: PPP-Blinky\r\n"); // http header
            n=n+sprintf(n+dataStart,"Content-Length: "); // http header
            int contentLengthStart = n; // remember where Content-Length is in buffer
            n=n+sprintf(n+dataStart,"?????\r\n"); // leave five spaces for content length - will be updated later
            n=n+sprintf(n+dataStart,"Content-Type: text/html;  charset=us-ascii\r\n\r\n"); // http header must end with empty line (\r\n)
            int nHeader=n; // byte total of all headers. Note - seems like this must be 1+(multiple of four)

            n=n+sprintf(n+dataStart,"<!DOCTYPE html><html><head></head>"); // html start
            n=n+sprintf(n+dataStart,"<body><h1>File Not Found</h1></body>");
            n=n+sprintf(n+dataStart,"</html>\r\n"); // html end

            int contentLength = n-nHeader; // Content-Length is the count of every character after the header
            int cSize = 5; // maximum number of digits we allow for Content-Length
            char contentLengthString[cSize+1]; // temporary buffer to create Content-Length string
            snprintf(contentLengthString,cSize+1,"%*d",cSize,contentLength); // print Content-Length with leading spaces and fixed width = csize
            memcpy(dataStart+contentLengthStart, contentLengthString, cSize); // copy Content-Length to the send buffer

            if (v0) {
                debug("HTTP GET BufSize %d*32=%d Header %d Content-Length %d Total %d Available %d\n",dataLen/32,dataLen,nHeader,contentLength,n,dataLen-n);
            }
            dataLen=n; // update the buffer size
        } else {
            dataLen=0; // we did not find a valid HTTP request, so just ACK with zero data
        }
    } else {
        dataLen=0; // it's not any TCP Flag Combo that needs special handling
    }

    // All the TCP flag handling is now done

    // Now we have to recalculate all the header sizes, swap IP address/port source and destination, and do the IP and TCP checksums

    char src[4]; // temp hold
    char dst[4]; // temp hold
    memcpy(src, srcAdr,4);
    memcpy(dst, dstAdr,4);
    memcpy(srcAdr, dst,4);
    memcpy(dstAdr, src,4); // swap ip address source/dest

    char psrc[2]; // temp hold
    char pdst[2]; // temp hold
    memcpy(psrc, srctcp,2);
    memcpy(pdst, dsttcp,2);
    memcpy(srctcp, pdst,2);
    memcpy(dsttcp, psrc,2); // swap ip port source/dest

    ack = seq + incomingLen; // acknowledge the number of bytes that they sent by adding it to "our" sequence number
    seq = ppp.seq; // set up the sequence number we have to respond with

    acktcp[0]=ack>>24;
    acktcp[1]=ack>>16;
    acktcp[2]=ack>>8;
    acktcp[3]=ack>>0; // save ack

    seqtcp[0]=seq>>24;
    seqtcp[1]=seq>>16;
    seqtcp[2]=seq>>8;
    seqtcp[3]=seq>>0; // save seq

    flagbitstcp[1] = flagsOut; // set up the new flags

    int newPacketSize = headerSizeIP + headerSizeTCP + dataLen; // calculate size of the outgoing packet
    pktLen[0] = (newPacketSize>>8);
    pktLen[1]=newPacketSize; // ip total packet size
    ppp.pkt.len = newPacketSize+6; // ppp packet length
    tcpSize = headerSizeTCP + dataLen; // tcp packet size

    // the header is all set up, now do the IP and TCP checksums

    headercheck[0]=0;
    headercheck[1]=0;
    headerCheckSum(); // redo the ip header checksum

    char pseudoHeader[12]; // we are building a fake TCP header
    int sum;
    memcpy( pseudoHeader+0, srcAdr, 8); // source and destination addresses.
    pseudoHeader[8]=0;
    pseudoHeader[9]=protocol[0];
    pseudoHeader[10]=tcpSize>>8;
    pseudoHeader[11]=tcpSize;
    char temp[12]; // temporary storage for the 12 bytes that are in the way
    memcpy(temp, s-12, 12); // save the 12 bytes that are in the way
    memcpy( s-12, pseudoHeader, 12); // copy in the fake header
    checksumtcp[0]=0;
    checksumtcp[1]=0;
    sum=dataCheckSum(s-12,tcpSize+12); // calculate the TCP checksum
    checksumtcp[0]=sum>>8;
    checksumtcp[1]=sum;
    memcpy( s-12, temp, 12); // restore the 12 bytes that the fake header overwrote
    if (fastResponse==1) {
        fastResponse=0; // reset and skip 200 ms wait
    } else {
        wait(0.2); // normally, you wait 200 ms before sending a TCP packet
    }
    sendFrame(); // All done! Send the TCP packet
    ppp.seq = ppp.seq + dataLen; // increase OUR sequence by the outgoing data length - for the next round
}

void dumpDataTCP()
{
    int ipPktLen     = (ppp.pkt.buf[6]<<8)|ppp.pkt.buf[7]; // overall length of ip packet
    int ipHeaderLen  = (ppp.pkt.buf[4]&0xf)*4; // length of ip header
    int headerSizeTCP = ((ppp.pkt.buf[4+ipHeaderLen+12]>>4)&0xf)*4;; // length of tcp header
    int dataLen = ipPktLen - ipHeaderLen - headerSizeTCP; // data is what's left after the two headers
    if (v1) {
        debug("TCP %d ipHeader %d tcpHeader %d Data %d\n", ipPktLen, ipHeaderLen, headerSizeTCP, dataLen);    // 1 for more verbose
    }
    if (dataLen > 0) {
        ppp.pkt.buf[4+ipHeaderLen+headerSizeTCP+dataLen]=0; // insert a null after the data so debug printf stops printing after the data
        debug("%s\n",ppp.pkt.buf+4+ipHeaderLen+headerSizeTCP);    // show the data
    }
}

void TCPpacket()
{
    char * ipPkt = ppp.pkt.buf+4; // ip packet start
    char * version =    ipPkt;    // top 4 bits
    char * ihl =        ipPkt;    // bottom 4 bits
    char * dscp =       ipPkt+1;  // top 6 bits
    char * ecn =        ipPkt+1;  // lower 2 bits
    char * pktLen =     ipPkt+2;  // 2 bytes
    char * ident =      ipPkt+4;  // 2 bytes
    char * flags =      ipPkt+6;  // 2 bits
    char * ttl =        ipPkt+8;  // 1 byte
    char * protocol =   ipPkt+9;  // 1 byte
    char * headercheck= ipPkt+10; // 2 bytes
    char * srcAdr =     ipPkt+12; // 4 bytes
    char * dstAdr =     ipPkt+16; // 4 bytes = total of 20 bytes

    int versionIP = (version[0]>>4)&0xf;
    int headerSizeIP = (ihl[0]&0xf)*4;
    int dscpIP = (dscp[0]>>2)&0x3f;
    int ecnIP = ecn[0]&3;
    int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length
    int identIP = (ident[0]<<8)|ident[1];
    int flagsIP = flags[0]>>14&3;
    int ttlIP = ttl[0];
    int protocolIP = protocol[0];
    int checksumIP = (headercheck[0]<<8)|headercheck[1];
    char srcIP [16];
    snprintf(srcIP,16, "%d.%d.%d.%d", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3]);
    char dstIP [16];
    snprintf(dstIP,16, "%d.%d.%d.%d", dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]);
    if (v0) {
        debug("IP %s %s v%d h%d d%d e%d L%d ",srcIP,dstIP,versionIP,headerSizeIP,dscpIP,ecnIP,packetLength);
    }
    if (v0) {
        debug("i%04x f%d t%d p%d C%04x\n",identIP,flagsIP,ttlIP,protocolIP,checksumIP);
    }
    dumpHeaderTCP();
    dumpDataTCP();
    tcpHandler();
}

void otherProtocol()
{
    debug(("Other IP protocol"));
}

void IPframe()
{
    int protocol = ppp.pkt.buf[13];
    switch (protocol) {
        case    1:
            ICMPpacket();
            break;
        case    2:
            IGMPpacket();
            break;
        case   17:
            UDPpacket();
            break;
        case    6:
            TCPpacket();
            break;
        default:
            otherProtocol();
    }
}

void LCPconfReq()
{
    debug(("LCP Config "));
    if (ppp.pkt.buf[7] != 4) {
        ppp.pkt.buf[4]=4; // allow only no options
        debug(("Reject\n"));
        sendFrame();
    } else {
        ppp.pkt.buf[4]=2; // ack zero conf
        debug(("Ack\n"));
        sendFrame();
        debug(("LCP Ask\n"));
        ppp.pkt.buf[4]=1; // request no options
        sendFrame();
    }
}

void LCPconfAck()
{
    debug(("LCP Ack\n"));
}

void LCPend()
{
    debug(("LCP End\n"));
    ppp.online=0; // start hunting for connect string again
    ppp.pkt.buf[4]=6;
    sendFrame(); // acknowledge
}

void LCPother()
{
    debug(("LCP Other\n"));
    dumpFrame();
}

void LCPframe()
{
    int code = ppp.pkt.buf[4];
    switch (code) {
        case 1:
            LCPconfReq();
            break; // config request
        case 2:
            LCPconfAck();
            break; // config ack
        case 5:
            LCPend();
            break; // end connection
        default:
            LCPother();
    }
}

void discardedFrame()
{
    if (v0) {
        debug("Dropping frame %02x %02x %02x %02x\n", ppp.pkt.buf[0],ppp.pkt.buf[1],ppp.pkt.buf[2],ppp.pkt.buf[3]);
    }
}

void determinePacketType()
{
    if ( ppp.pkt.buf[0] != 0xff ) {
        debug(("byte0 != ff\n"));
        return;
    }
    if ( ppp.pkt.buf[1] != 3    ) {
        debug(("byte1 !=  3\n"));
        return;
    }
    if ( ppp.pkt.buf[3] != 0x21 ) {
        debug(("byte2 != 21\n"));
        return;
    }
    int packetType = ppp.pkt.buf[2];
    switch (packetType) {
        case 0xc0:
            LCPframe();
            break;  // link control
        case 0x80:
            IPCPframe();
            break;  // IP control
        case 0x00:
            IPframe();
            break;  // IP itself
        default:
            discardedFrame();
    }
}

void wait_for_HDLC_frame()
{

    while ( rxbufNotEmpty() ) {
        int rx = pc_getBuf();
        if (ppp.hdlc.frameBusy) {
            if (rx==FRAME_7E) {
                ppp.hdlc.frameBusy=0; // done gathering frame
                if (ppp.rx.tail == 0) { // did we just wrap around?
                    ppp.hdlc.frameEndIndex=BUFLEN-1; // wrap back to end of buffer
                }
                else {
                    ppp.hdlc.frameEndIndex=ppp.rx.tail-1; // remember where frame ends
                }
                processHDLCFrame(ppp.hdlc.frameStartIndex, ppp.hdlc.frameEndIndex);
            }
        } else {
            if (rx==FRAME_7E) {
                ppp.hdlc.frameBusy=1; // start gathering frame
                ppp.hdlc.frameStartIndex=ppp.rx.tail; // remember where frame started
            }
        }
    }
}

void scanForConnectString()
{
    if ( ppp.online==0 ) {
        char * clientFound = strstr( (char *)rxbufppp, "CLIENTCLIENT" ); // look for PC string
        if( clientFound ) {
            strcpy( clientFound, "FOUND!FOUND!" ); // overwrite so we don't get fixated
            pc.printf("CLIENTSERVER"); // respond to PC
            ppp.online=1; // we can stop looking for the string
            debug(("Connect string found\n"));
        }
    }
}

int main()
{
    pc.baud(115200); // USB virtual serial port
#ifndef SERIAL_PORT_MONITOR_NO
    xx.baud(115200); // second serial port for debug messages
    xx.puts("\x1b[2J\x1b[HReady\n"); // VT100 code for clear screen & home
#endif
    pppInitStruct(); // initialize all the PPP properties
    pc.attach(&rxHandler,Serial::RxIrq); // start the receive handler
    while(1) {
        scanForConnectString(); // respond to connect string from PC
        wait_for_HDLC_frame();
    }
}