RealtimeCompLab2
Dependencies: mbed
Fork of PPP-Blinky by
main.cpp
- Committer:
- nixnax
- Date:
- 2017-01-10
- Revision:
- 42:4de44be70bfd
- Parent:
- 41:e58a5a09f411
- Child:
- 43:aa57db08995d
File content as of revision 42:4de44be70bfd:
#include "mbed.h" // Copyright 2016 Nicolas Nackel aka Nixnax. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // PPP-Blinky - "My Internet Of Thing" // A Tiny Webserver Using Windows XP/7/8/10 Networking Over A Serial Port. // Also receives UDP packets and responds to ping (ICMP Echo requests) // Notes and Instructions // http://bit.ly/PPP-Blinky-Instructions // Handy reading material // https://technet.microsoft.com/en-us/library/cc957992.aspx // https://en.wikibooks.org/wiki/Serial_Programming/IP_Over_Serial_Connections // http://bit.ly/dialup777error - how to solve Dial Up Error 777 in Windows 7/8/10 // http://atari.kensclassics.org/wcomlog.htm // Handy tools // https://ttssh2.osdn.jp/index.html.en - Tera Term, agood terminal program to monitor the debug output from the second serial port with! // Wireshark - can't monitor Dial-Up network packets on windows, but very hand - can import our dumpFrame routine's hex output // Microsoft network monitor - real-time monitoring of all our packets // http://pingtester.net/ - nice tool for high rate ping testing // http://www.sunshine2k.de/coding/javascript/crc/crc_js.html - Correctly calculates the 16-bit FCS (crc) on our frames (Choose CRC16_CCITT_FALSE) // The curl.exe program in Windows Powershell - use it like this to stress test the webserver: while (1) { curl 172.10.10.1 } // https://technet.microsoft.com/en-us/sysinternals/pstools.aspx - psping for fast testing of ICMP ping function // https://eternallybored.org/misc/netcat/ - use netcat -u 172.10.10.1 80 to send/receive UDP packets from PPP-Blinky // This #define enables/disables a second serial port that prints out interesting diagnostic messages #define SERIAL_PORT_MONITOR_YES // #define SERIAL_PORT_MONITOR_NO #ifndef SERIAL_PORT_MONITOR_NO Serial xx(PC_10, PC_11); // See debug messages on this port. Not necessary to work, but VERY interesting output! #define debug(x...) xx.printf (x) #else // no debug monitoring #define debug(x...) {} #endif Serial pc(USBTX, USBRX); // The serial port on your mbed hardware. Your PC thinks this is a dial-up modem. int v0=1; int v1=1; // verbosity flags used in debug printouts - change to 1/0 to see more/less debug info DigitalOut led1(LED1); // this led toggles when a packet is received // the standard hdlc frame start/end character #define FRAME_7E (0x7e) // the serial port receive buffer and packet buffer #define BUFLEN (1<<12) char rxbuf[BUFLEN]; char frbuf[2000]; // send/receive buffer for ppp frames // a structure to keep all our ppp globals in struct pppType { int online; // we hunt for a PPP connection if this is zero int ident; // our IP ident value unsigned int seq; // our TCP sequence number int crc; // for calculating IP and TCP CRCs int ledState; // state of LED1 struct { char * buf; volatile int head; volatile int tail; } rx; // serial port objects struct { int len; // number of bytes in buffer int crc; // PPP CRC (frame check) char * buf; // the actual buffer } pkt; // ppp buffer objects }; pppType ppp; // our global - definitely not thread safe // intitialize our globals void pppInitStruct() { ppp.online=0; ppp.rx.buf=rxbuf; ppp.rx.tail=0; ppp.rx.head=0; ppp.pkt.buf=frbuf; ppp.pkt.len=0; ppp.ident=0; ppp.seq=1000; ppp.ledState=0; } void crcReset() { ppp.crc=0xffff; // crc restart } void crcDo(int x) // cumulative crc { for (int i=0; i<8; i++) { ppp.crc=((ppp.crc&1)^(x&1))?(ppp.crc>>1)^0x8408:ppp.crc>>1; // crc calculator x>>=1; } } int crcBuf(char * buf, int size) // crc on an entire block of memory { crcReset(); for(int i=0; i<size; i++)crcDo(*buf++); return ppp.crc; } void rxHandler() // serial port receive interrupt handler { while ( pc.readable() ) { int hd = (ppp.rx.head+1)&(BUFLEN-1); // increment/wrap if ( hd == ppp.rx.tail ) break; // watch for buffer full ppp.rx.buf[ppp.rx.head]=pc.getc(); // insert in rx buffer ppp.rx.head = hd; // update head pointer } } void led1Toggle() { ppp.ledState = ppp.ledState? 0 : 1; led1 = ppp.ledState; } int rxbufNotEmpty() // check if rx buffer has data { __disable_irq(); // critical section start int notEmpty = (ppp.rx.head==ppp.rx.tail) ? 0 : 1 ; __enable_irq(); // critical section end return notEmpty; } int pc_getBuf() // get one character from the buffer { if ( rxbufNotEmpty() ) { int x = ppp.rx.buf[ ppp.rx.tail ]; __disable_irq(); // critical section start ppp.rx.tail=(ppp.rx.tail+1)&(BUFLEN-1); __enable_irq(); // critical section end return x; } else return -1; } void processFrame(int start, int end) // process received frame { led1Toggle(); // change led1 state on every frame we receive if(start==end) { pc.putc(0x7e); return; } crcReset(); char * dest = ppp.pkt.buf; ppp.pkt.len=0; int unstuff=0; int idx = start; while(1) { if (unstuff==0) { if (rxbuf[idx]==0x7d) unstuff=1; else { *dest = rxbuf[idx]; ppp.pkt.len++; dest++; crcDo(rxbuf[idx]); } } else { // unstuff *dest = rxbuf[idx]^0x20; ppp.pkt.len++; dest++; crcDo(rxbuf[idx]^0x20); unstuff=0; } idx = (idx+1) & (BUFLEN-1); if (idx == end) break; } ppp.pkt.crc = ppp.crc & 0xffff; if (ppp.pkt.crc == 0xf0b8) { // check for good CRC void determinePacketType(); // declaration only determinePacketType(); } else if (v0) { debug("PPP FCS(crc) Error CRC=%x Length = %d\n",ppp.pkt.crc,ppp.pkt.len); } } // Note - the hex output of dumpFrame() can be imported into WireShark // Capture the frame's hex output in your terminal program and save as a text file // In WireShark, use "Import Hex File". Options are: Offset=None, Protocol=PPP. void dumpFrame() { for(int i=0; i<ppp.pkt.len; i++) debug("%02x ", ppp.pkt.buf[i]); debug(" C=%02x %02x L=%d\n", ppp.pkt.crc&0xff, (ppp.pkt.crc>>8)&0xff, ppp.pkt.len); } void hdlcPut(int ch) // do hdlc handling of special (flag) characters { if ( (ch<0x20) || (ch==0x7d) || (ch==0x7e) ) { pc.putc(0x7d); pc.putc(ch^0x20); // three characters need special handling } else { pc.putc(ch); } } void sendFrame() // send one PPP frame in HDLC format { int crc = crcBuf(ppp.pkt.buf, ppp.pkt.len-2); // update crc ppp.pkt.buf[ ppp.pkt.len-2 ] = (~crc>>0); // fcs lo (crc) ppp.pkt.buf[ ppp.pkt.len-1 ] = (~crc>>8); // fcs hi (crc) pc.putc(0x7e); // hdlc start-of-frame "flag" for(int i=0; i<ppp.pkt.len; i++) hdlcPut( ppp.pkt.buf[i] ); pc.putc(0x7e); // hdlc end-of-frame "flag" } void ipRequestHandler() { debug(("IPCP Conf ")); if ( ppp.pkt.buf[7] != 4 ) { debug(("Rej\n")); // reject if any options are requested ppp.pkt.buf[4]=4; sendFrame(); } else { debug(("Ack\n")); ppp.pkt.buf[4]=2; // ack the minimum sendFrame(); // acknowledge debug(("IPCP Ask\n")); // send our own request now ppp.pkt.buf[4]=1; // request no options ppp.pkt.buf[5]++; // next sequence sendFrame(); // this is our request } } void ipAckHandler() { debug(("IPCP Grant\n")); } void ipNackHandler() { debug(("IPCP Nack\n")); } void ipDefaultHandler() { debug(("IPCP Other\n")); } void IPCPframe() { int code = ppp.pkt.buf[4]; // packet type is here switch (code) { case 1: ipRequestHandler(); break; case 2: ipAckHandler(); break; case 3: ipNackHandler(); break; default: ipDefaultHandler(); } } void UDPpacket() { char * udpPkt = ppp.pkt.buf+4; // udp packet start int headerSizeIP = (( udpPkt[0]&0xf)*4); char * udpBlock = udpPkt + headerSizeIP; // udp info start char * udpSrc = udpBlock; // source port char * udpDst = udpBlock+2; // destination port char * udpLen = udpBlock+4; // udp data length char * udpInf = udpBlock+8; // actual start of info int srcPort = (udpSrc[0]<<8) | udpSrc[1]; int dstPort = (udpDst[0]<<8) | udpDst[1]; char * srcIP = udpPkt+12; // udp src addr char * dstIP = udpPkt+16; // udp dst addr #define UDP_HEADER_SIZE 8 int udpLength = ((udpLen[0]<<8) | udpLen[1]) - UDP_HEADER_SIZE; // size of the actual udp data if(v1) debug("UDP %d.%d.%d.%d:%d ", srcIP[0],srcIP[1],srcIP[2],srcIP[3],srcPort); if(v1) debug("%d.%d.%d.%d:%d ", dstIP[1],dstIP[1],dstIP[1],dstIP[1],dstPort); debug("Len %d ", udpLength); int printSize = udpLength; if (printSize > 20) printSize = 20; // print only first 20 characters if (v0) { for (int i=0; i<printSize; i++) { char ch = udpInf[i]; if (ch>31 && ch<127) { debug("%c", ch); } else { debug(("_")); } } debug(("\n")); } } int dataCheckSum(char * ptr, int len) { int sum=0; int placeHolder; if (len&1) { placeHolder = ptr[len-1]; // when length is odd stuff in a zero byte ptr[len-1]=0; } for (int i=0; i<len/2; i++) { int hi = *ptr; ptr++; int lo = *ptr; ptr++; int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 ); sum = sum + val; } sum = sum + (sum>>16); if (len&1) { ptr[len-1] = placeHolder; // restore the last byte for odd lengths } return ~sum; } void headerCheckSum() { int len =(ppp.pkt.buf[4]&0xf)*4; // length of header in bytes char * ptr = ppp.pkt.buf+4; // start of ip packet int sum=0; for (int i=0; i<len/2; i++) { int hi = *ptr; ptr++; int lo = *ptr; ptr++; int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 ); sum = sum + val; } sum = sum + (sum>>16); sum = ~sum; ppp.pkt.buf[14]= (sum>>8); ppp.pkt.buf[15]= (sum ); } void ICMPpacket() // internet control message protocol { char * ipPkt = ppp.pkt.buf+4; // ip packet start char * pktLen = ipPkt+2; int packetLength = (pktLen[0]<<8) | pktLen[1]; // icmp packet length int headerSizeIP = (( ipPkt[0]&0xf)*4); char * icmpType = ipPkt + headerSizeIP; // icmp data start char * icmpSum = icmpType+2; // icmp checksum #define ICMP_TYPE_PING_REQUEST 8 if ( icmpType[0] == ICMP_TYPE_PING_REQUEST ) { char * ipTTL = ipPkt+8; // time to live ipTTL[0]--; // decrement time to live char * srcAdr = ipPkt+12; char * dstAdr = ipPkt+16; int icmpIdent = (icmpType[4]<<8)|icmpType[5]; int icmpSequence = (icmpType[6]<<8)|icmpType[7]; debug("ICMP PING %d.%d.%d.d %d.%d.%d.%d ", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3],dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); debug("Ident %04x Sequence %04d ",icmpIdent,icmpSequence); char src[4]; char dst[4]; memcpy(src, srcAdr,4); memcpy(dst, dstAdr,4); memcpy(srcAdr, dst,4); memcpy(dstAdr, src,4); // swap src & dest ip char * chkSum = ipPkt+10; chkSum[0]=0; chkSum[1]=0; headerCheckSum(); // new ip header checksum #define ICMP_TYPE_ECHO_REPLY 0 icmpType[0]=ICMP_TYPE_ECHO_REPLY; // icmp echo reply icmpSum[0]=0; icmpSum[1]=0; // zero the checksum for recalculation int icmpLength = packetLength - headerSizeIP; // length of ICMP data portion int sum = dataCheckSum( icmpType, icmpLength); // this checksum on icmp data portion icmpSum[0]=sum>>8; icmpSum[1]=sum; // new checksum for ICMP data portion int printSize = icmpLength-8; // exclude size of icmp header char * icmpData = icmpType+8; // the actual payload data is after the header if (printSize > 10) printSize = 10; // print up to 20 characters if (v0) { for (int i=0; i<printSize; i++) { char ch = icmpData[i]; if (ch>31 && ch<127) { debug("%c",ch); } else { debug(("_")); } } debug(("\n")); } sendFrame(); // reply to the ping } else { if (v0) { debug("ICMP type=%d \n", icmpType[0]); } } } void IGMPpacket() // internet group management protocol { if (v0) { debug("IGMP type=%d \n", ppp.pkt.buf[28]); } } void dumpHeaderIP () { char * ipPkt = ppp.pkt.buf+4; // ip packet start char * version = ipPkt; // top 4 bits char * ihl = ipPkt; // bottom 4 bits char * dscp = ipPkt+1; // top 6 bits char * ecn = ipPkt+1; // lower 2 bits char * pktLen = ipPkt+2; // 2 bytes char * ident = ipPkt+4; // 2 bytes char * flags = ipPkt+6; // 2 bits char * ttl = ipPkt+8; // 1 byte char * protocol = ipPkt+9; // 1 byte char * headercheck= ipPkt+10; // 2 bytes char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes int versionIP = (version[0]>>4)&0xf; int headerSizeIP = (ihl[0]&0xf)*4; int dscpIP = (dscp[0]>>2)&0x3f; int ecnIP = ecn[0]&3; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length int identIP = (ident[0]<<8)|ident[1]; int flagsIP = flags[0]>>14&3; int ttlIP = ttl[0]; int protocolIP = protocol[0]; int checksumIP = (headercheck[0]<<8)|headercheck[1]; char srcIP [16]; snprintf(srcIP,16, "%d.%d.%d.%d", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3]); char dstIP [16]; snprintf(dstIP,16, "%d.%d.%d.%d", dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); if (v0) debug("IP %s %s v%d h%d d%d e%d L%d ",srcIP,dstIP,versionIP,headerSizeIP,dscpIP,ecnIP,packetLength); if (v0) debug("i%04x f%d t%d p%d C%04x\n",identIP,flagsIP,ttlIP,protocolIP,checksumIP); } void dumpHeaderTCP() { int headerSizeIP = (ppp.pkt.buf[4]&0xf)*4; // header size of ip portion char * tcpStart = ppp.pkt.buf+4+headerSizeIP; // start of tcp packet char * seqtcp = tcpStart + 4; // 4 bytes char * acktcp = tcpStart + 8; // 4 bytes char * flagbitstcp = tcpStart + 12; // 9 bits unsigned int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]); unsigned int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]); int flags = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; char flagInfo[10]; memset(flagInfo,'.',10); // text presentation of TCP flags if (flags & (1<<0)) flagInfo[0]='F'; if (flags & (1<<1)) flagInfo[1]='S'; if (flags & (1<<2)) flagInfo[2]='R'; if (flags & (1<<3)) flagInfo[3]='P'; if (flags & (1<<4)) flagInfo[4]='A'; if (flags & (1<<5)) flagInfo[5]='U'; if (flags & (1<<6)) flagInfo[6]='E'; if (flags & (1<<7)) flagInfo[7]='C'; if (flags & (1<<8)) flagInfo[8]='N'; flagInfo[9]=0; // null terminate string if (v0) { debug("Flags %s Seq %u Ack %u", flagInfo, seq, ack); } } void tcpHandler() { char * ipPkt = ppp.pkt.buf+4; // ip packet start char * headercheck= ipPkt+10; // 2 bytes char * ihl = ipPkt; // bottom 4 bits char * ident = ipPkt+4; // 2 bytes char * pktLen = ipPkt+2; // 2 bytes char * protocol = ipPkt+9; // 1 byte char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes int headerSizeIP = (ihl[0]&0xf)*4; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length ident[0] = ppp.ident>>8; ident[1] = ppp.ident>>0; // insert OUR ident char * s = ppp.pkt.buf+4+headerSizeIP; // start of tcp packet char * srctcp = s + 0; // 2 bytes char * dsttcp = s + 2; // 2 bytes char * seqtcp = s + 4; // 4 bytes char * acktcp = s + 8; // 4 bytes char * offset = s + 12; // 4 bits char * flagbitstcp = s + 12; // 9 bits char * checksumtcp = s + 16; // 2 bytes int tcpSize = packetLength - headerSizeIP; int headerSizeTCP = ((offset[0]>>4)&0x0f)*4; // size of tcp header only unsigned int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]); unsigned int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]); int flagsTCP = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; char * dataStart = ppp.pkt.buf + 4 + headerSizeIP + headerSizeTCP; // start of data block after TCP header int incomingLen = tcpSize - headerSizeTCP; // size of data block after TCP header #define TCP_FLAG_ACK (1<<4) #define TCP_FLAG_SYN (1<<1) #define TCP_FLAG_PSH (1<<3) #define TCP_FLAG_RST (1<<2) #define TCP_FLAG_FIN (1<<0) // A sparse TCP flag interpreter that implements simple TCP connections from a single source // Clients are allowed ONE push packet, after which the link is closed with a FIN flag in the ACK packet // This strategy allows web browsers, netcat and curl to work ok while keeping the state machine simple int dataLen = 0; // most of our responses will have zero TCP data, only a header int flagsOut = TCP_FLAG_ACK; // the default case is an ACK packet int fastResponse = 0; // normally you wait 200ms before sending a packet but this can make it faster if (ppp.seq != ack) { ppp.seq = ack; // if their sequence number is different than our calculation we adopt their version } if ( ((flagsTCP & ~TCP_FLAG_ACK) == 0) && ((flagsTCP & TCP_FLAG_ACK) != 0) ) { if (incomingLen == 0) { // ignore - just an empty ack packet return; } } else if ( (flagsTCP & TCP_FLAG_SYN) != 0 ) { // got SYN flag flagsOut = TCP_FLAG_SYN | TCP_FLAG_ACK; // do a syn-ack seq++; // for SYN flag we have to increase sequence by 1 } else if ( (flagsTCP & TCP_FLAG_FIN) != 0 ) { // got FIN flag seq++; // for FIN flag we have to increase sequence by 1 } else if ( (flagsTCP & TCP_FLAG_PSH) != 0 ) { // got PSH flag (push) flagsOut = TCP_FLAG_ACK | TCP_FLAG_FIN; // for every push we answer once AND close the link fastResponse = 1; // we can respond fast to a push // It's a push, so let's check the incoming data for an HTTP GET request if ( strncmp(dataStart, "GET / HTTP/1.1", 14) == 0) { dataLen = 17*32; // this block has to hold the web page below, but keep it under 1k memset(dataStart,'x', dataLen ); // initialize the data block int n=0; // number of bytes we have printed so far n=n+sprintf(n+dataStart,"HTTP/1.1 200 OK\r\nServer: PPP-Blinky\r\n"); // http header n=n+sprintf(n+dataStart,"Content-Length: 441\r\n"); // http header n=n+sprintf(n+dataStart,"Content-Type: text/html; charset=us-ascii\r\n\r\n"); // http header int nHeader=n; // byte total of all headers n=n+sprintf(n+dataStart,"<!DOCTYPE html><html><head><title>mbed-PPP-Blinky</title>\n<script>window.onload=function()"); // html n=n+sprintf(n+dataStart,"{setInterval(function(){function x(){return document.getElementById('w');};"); // html n=n+sprintf(n+dataStart,"x().textContent = parseInt(x().textContent)+1;},100);};</script>\n</head><body style=\"font-size:30px; color:#807070\">"); // html n=n+sprintf(n+dataStart,"<h1>mbed PPP-Blinky Up and Running</h1><h1 id=\"w\" style=\"text-align:"); // html n=n+sprintf(n+dataStart," center;\">0</h1><h1><a href=\"http://bit.ly/pppBlink2\">Source on mbed</a></h1></body></html>"); // html int contentLength = dataLen-nHeader; // this is how to calculate Content-Length, but using curl -v is easier contentLength = contentLength+0; // get around unreferenced variable warning if (v0) { debug("HTTP GET dataLen %d*32=%d Header %d Content-Length %d Total %d Margin %d\n",dataLen/32,dataLen,nHeader,contentLength,n,dataLen-n); } } else if ( strncmp(dataStart, "GET /", 4) == 0) { // all other HTTP GET requests get 404 Not Found response dataLen = 5*32; // block size for File not found webpage memset(dataStart,'x', dataLen ); // initialize the data block int n=0; // number of bytes we have printed so far n=n+sprintf(n+dataStart,"HTTP/1.1 404 Not Found\r\nServer: PPP-Blinky\r\n"); // http header n=n+sprintf(n+dataStart,"Content-Length: 58\r\n"); // http header n=n+sprintf(n+dataStart,"Content-Type: text/html; charset=us-ascii\r\n\r\n"); // http header int nHeader=n; // byte total of all headers n=n+sprintf(n+dataStart,"<html><head>"); // html n=n+sprintf(n+dataStart,"<body><h1>File Not Found</h1></body>\r\n</html>"); // html int contentLength = dataLen-nHeader; // this is how to calculate Content-Length, but using curl -v is easier contentLength = contentLength+0; // get around unreferenced variable warning if (v0) { debug("HTTP GET dataLen %d*32=%d Header %d Content-Length %d Total %d Margin %d\n",dataLen/32,dataLen,nHeader,contentLength,n,dataLen-n); } } else { dataLen=0; // we did not find a valid HTTP request, so just ACK with zero data } } else { dataLen=0; // it's not any TCP Flag Combo that needs special handling } // All the TCP flag handling is now done // Now we have to recalculate all the header sizes, swap IP address/port source and destination, and do the IP and TCP checksums char src[4]; // temp hold char dst[4]; // temp hold memcpy(src, srcAdr,4); memcpy(dst, dstAdr,4); memcpy(srcAdr, dst,4); memcpy(dstAdr, src,4); // swap ip address source/dest char psrc[2]; // temp hold char pdst[2]; // temp hold memcpy(psrc, srctcp,2); memcpy(pdst, dsttcp,2); memcpy(srctcp, pdst,2); memcpy(dsttcp, psrc,2); // swap ip port source/dest ack = seq + incomingLen; // acknowledge the number of bytes that they sent by adding it to "our" sequence number seq = ppp.seq; // set up the sequence number we have to respond with acktcp[0]=ack>>24; acktcp[1]=ack>>16; acktcp[2]=ack>>8; acktcp[3]=ack>>0; // save ack seqtcp[0]=seq>>24; seqtcp[1]=seq>>16; seqtcp[2]=seq>>8; seqtcp[3]=seq>>0; // save seq flagbitstcp[1] = flagsOut; // set up the new flags int newPacketSize = headerSizeIP + headerSizeTCP + dataLen; // calculate size of the outgoing packet pktLen[0] = (newPacketSize>>8); pktLen[1]=newPacketSize; // ip total packet size ppp.pkt.len = newPacketSize+6; // ppp packet length tcpSize = headerSizeTCP + dataLen; // tcp packet size // the header is all set up, now do the IP and TCP checksums headercheck[0]=0; headercheck[1]=0; headerCheckSum(); // redo the ip header checksum char pseudoHeader[12]; // we are building a fake TCP header int sum; memcpy( pseudoHeader+0, srcAdr, 8); // source and destination addresses. pseudoHeader[8]=0; pseudoHeader[9]=protocol[0]; pseudoHeader[10]=tcpSize>>8; pseudoHeader[11]=tcpSize; char temp[12]; // temporary storage for the 12 bytes that are in the way memcpy(temp, s-12, 12); // save the 12 bytes that are in the way memcpy( s-12, pseudoHeader, 12); // copy in the fake header checksumtcp[0]=0; checksumtcp[1]=0; sum=dataCheckSum(s-12,tcpSize+12); // calculate the TCP checksum checksumtcp[0]=sum>>8; checksumtcp[1]=sum; memcpy( s-12, temp, 12); // restore the 12 bytes that the fake header overwrote if (fastResponse==1) { fastResponse=0; // reset and skip 200 ms wait } else { wait(0.2); // normally, you wait 200 ms before sending a TCP packet } sendFrame(); // All done! Send the TCP packet ppp.seq = ppp.seq + dataLen; // increase OUR sequence by the outgoing data length - for the next round } void dumpDataTCP() { int ipPktLen = (ppp.pkt.buf[6]<<8)|ppp.pkt.buf[7]; // overall length of ip packet int ipHeaderLen = (ppp.pkt.buf[4]&0xf)*4; // length of ip header int headerSizeTCP = ((ppp.pkt.buf[4+ipHeaderLen+12]>>4)&0xf)*4;; // length of tcp header int dataLen = ipPktLen - ipHeaderLen - headerSizeTCP; // data is what's left after the two headers if (v1) { debug("TCP %d ipHeader %d tcpHeader %d Data %d\n", ipPktLen, ipHeaderLen, headerSizeTCP, dataLen); // 1 for more verbose } if (dataLen > 0) { debug("%s\n",ppp.pkt.buf+4+ipHeaderLen+headerSizeTCP); // show the data } } void TCPpacket() { char * ipPkt = ppp.pkt.buf+4; // ip packet start char * version = ipPkt; // top 4 bits char * ihl = ipPkt; // bottom 4 bits char * dscp = ipPkt+1; // top 6 bits char * ecn = ipPkt+1; // lower 2 bits char * pktLen = ipPkt+2; // 2 bytes char * ident = ipPkt+4; // 2 bytes char * flags = ipPkt+6; // 2 bits char * ttl = ipPkt+8; // 1 byte char * protocol = ipPkt+9; // 1 byte char * headercheck= ipPkt+10; // 2 bytes char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes int versionIP = (version[0]>>4)&0xf; int headerSizeIP = (ihl[0]&0xf)*4; int dscpIP = (dscp[0]>>2)&0x3f; int ecnIP = ecn[0]&3; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length int identIP = (ident[0]<<8)|ident[1]; int flagsIP = flags[0]>>14&3; int ttlIP = ttl[0]; int protocolIP = protocol[0]; int checksumIP = (headercheck[0]<<8)|headercheck[1]; char srcIP [16]; snprintf(srcIP,16, "%d.%d.%d.%d", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3]); char dstIP [16]; snprintf(dstIP,16, "%d.%d.%d.%d", dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); if (v0) { debug("IP %s %s v%d h%d d%d e%d L%d ",srcIP,dstIP,versionIP,headerSizeIP,dscpIP,ecnIP,packetLength); } if (v0) { debug("i%04x f%d t%d p%d C%04x\n",identIP,flagsIP,ttlIP,protocolIP,checksumIP); } dumpHeaderTCP(); dumpDataTCP(); tcpHandler(); } void otherProtocol() { debug(("Other IP protocol")); } void IPframe() { int protocol = ppp.pkt.buf[13]; switch (protocol) { case 1: ICMPpacket(); break; case 2: IGMPpacket(); break; case 17: UDPpacket(); break; case 6: TCPpacket(); break; default: otherProtocol(); } } void LCPconfReq() { debug(("LCP Config ")); if (ppp.pkt.buf[7] != 4) { ppp.pkt.buf[4]=4; // allow only no options debug(("Reject\n")); sendFrame(); } else { ppp.pkt.buf[4]=2; // ack zero conf debug(("Ack\n")); sendFrame(); debug(("LCP Ask\n")); ppp.pkt.buf[4]=1; // request no options sendFrame(); } } void LCPconfAck() { debug(("LCP Ack\n")); } void LCPend() { debug(("LCP End\n")); ppp.online=0; // start hunting for connect string again ppp.pkt.buf[4]=6; sendFrame(); // acknowledge } void LCPother() { debug(("LCP Other\n")); dumpFrame(); } void LCPframe() { int code = ppp.pkt.buf[4]; switch (code) { case 1: LCPconfReq(); break; // config request case 2: LCPconfAck(); break; // config ack case 5: LCPend(); break; // end connection default: LCPother(); } } void discardedFrame() { if (v0) { debug("Dropping frame %02x %02x %02x %02x\n", ppp.pkt.buf[0],ppp.pkt.buf[1],ppp.pkt.buf[2],ppp.pkt.buf[3]); } } void determinePacketType() { if ( ppp.pkt.buf[0] != 0xff ) { debug(("byte0 != ff\n")); return; } if ( ppp.pkt.buf[1] != 3 ) { debug(("byte1 != 3\n")); return; } if ( ppp.pkt.buf[3] != 0x21 ) { debug(("byte2 != 21\n")); return; } int packetType = ppp.pkt.buf[2]; switch (packetType) { case 0xc0: LCPframe(); break; // link control case 0x80: IPCPframe(); break; // IP control case 0x00: IPframe(); break; // IP itself default: discardedFrame(); } } void scanForConnectString() { if ( ppp.online==0 ) { char * clientFound = strstr( (char *)rxbuf, "CLIENTCLIENT" ); // look for PC string if( clientFound ) { strcpy( clientFound, "FOUND!FOUND!" ); // overwrite so we don't get fixated pc.printf("CLIENTSERVER"); // respond to PC ppp.online=1; // we can stop looking for the string debug(("Connect string found\n")); } } } int main() { pc.baud(115200); // USB virtual serial port #ifndef SERIAL_PORT_MONITOR_NO xx.baud(115200); // second serial port for debug(((((((( messages xx.puts("\x1b[2J\x1b[HReady\n"); // VT100 code for clear screen & home #endif pppInitStruct(); // initialize all the PPP properties pc.attach(&rxHandler,Serial::RxIrq); // start the receive handler int frameStartIndex, frameEndIndex; int frameBusy=0; while(1) { if ( ppp.online==0 ) scanForConnectString(); // try to connect while ( rxbufNotEmpty() ) { int rx = pc_getBuf(); if (frameBusy) { if (rx==FRAME_7E) { frameBusy=0; // done gathering frame frameEndIndex=ppp.rx.tail-1; // remember where frame ends processFrame(frameStartIndex, frameEndIndex); } } else { if (rx==FRAME_7E) { frameBusy=1; // start gathering frame frameStartIndex=ppp.rx.tail; // remember where frame started } } } } }