RealtimeCompLab2
Dependencies: mbed
Fork of PPP-Blinky by
main.cpp
- Committer:
- nixnax
- Date:
- 2017-01-04
- Revision:
- 28:1aa629be05e7
- Parent:
- 27:78d194dd8799
- Child:
- 29:30de79d658f6
File content as of revision 28:1aa629be05e7:
#include "mbed.h" // Copyright 2016 Nicolas Nackel. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // Proof-of-concept for TCP/IP using Windows 7/8/10 Dial Up Networking over MBED USB Virtual COM Port // Toggles LED1 every time the PC sends an IP packet over the PPP link // Note - turn off all authentication, passwords, compression etc. Simplest link possible. // Handy links // https://developer.mbed.org/users/nixnax/code/PPP-Blinky/ - introduction and notes // http://atari.kensclassics.org/wcomlog.htm // https://technet.microsoft.com/en-us/library/cc957992.aspx // http://www.sunshine2k.de/coding/javascript/crc/crc_js.html // https://en.wikibooks.org/wiki/Serial_Programming/IP_Over_Serial_Connections // http://pingtester.net/ - nice tool for high rate ping testing Serial xx(USBTX, USBRX); // The USB com port - Set this up as a Dial-Up Modem on your pc Serial pc(PC_10, PC_11); // debug((((( port - use an additional USB serial port to monitor this // the second #define below gets rid of all the debug printfs #define debug(x) xx.printf x //#define debug(x) {} DigitalOut led1(LED1); #define FRAME_7E (0x7e) #define BUFLEN (1<<14) char rxbuf[BUFLEN]; char frbuf[6000]; // buffer for ppp frame struct { int online; int ident; int sync; int seq; struct { char * buf; volatile int head; volatile int tail; int total; } rx; // serial port buffer struct { int id; int len; int crc; char * buf; } pkt; // ppp buffer } ppp; struct tcpType { int connect; int ack; int seq; }; tcpType tcp; void pppInitStruct(){ ppp.online=0; ppp.rx.buf=rxbuf; ppp.rx.tail=0; ppp.rx.head=0; ppp.rx.total=0; ppp.pkt.buf=frbuf; ppp.pkt.len=0; ppp.ident=0; ppp.sync=0; ppp.seq=77;} int crcG; // frame check sequence (CRC) holder void crcDo(int x){for (int i=0;i<8;i++){crcG=((crcG&1)^(x&1))?(crcG>>1)^0x8408:crcG>>1;x>>=1;}} // crc calculator void crcReset(){crcG=0xffff;} // crc restart int crcBuf(char * buf, int size){crcReset();for(int i=0;i<size;i++)crcDo(*buf++);return crcG;} // crc on a block of memory void rxHandler() // serial port receive interrupt handler { while ( pc.readable() ) { int hd = (ppp.rx.head+1)&(BUFLEN-1); // increment/wrap if ( hd == ppp.rx.tail ) break; // watch for buffer full ppp.rx.buf[ppp.rx.head]=pc.getc(); // insert in rx buffer ppp.rx.head = hd; // update head pointer } } int ledState=0; void led1Toggle(){ ledState = ledState? 0 : 1; led1 = ledState; } int rxbufNotEmpty() // check if rx buffer has data { __disable_irq(); // critical section start int notEmpty = (ppp.rx.head==ppp.rx.tail) ? 0 : 1 ; __enable_irq(); // critical section end return notEmpty; } int pc_getBuf() // get one character from the buffer { if ( rxbufNotEmpty() ) { int x = ppp.rx.buf[ ppp.rx.tail ]; __disable_irq(); // critical section start ppp.rx.tail=(ppp.rx.tail+1)&(BUFLEN-1); __enable_irq(); // critical section end return x; } else return -1; } void scanForConnectString(); // scan for connect attempts from pc void processFrame(int start, int end) { // process received frame led1Toggle(); // change led1 state when frames are received if(start==end) { pc.putc(0x7e); return; } crcReset(); char * dest = ppp.pkt.buf; ppp.pkt.len=0; int unstuff=0; int idx = start; while(1) { if (unstuff==0) { if (rxbuf[idx]==0x7d) unstuff=1; else { *dest = rxbuf[idx]; ppp.pkt.len++; dest++; crcDo(rxbuf[idx]); } } else { // unstuff *dest = rxbuf[idx]^0x20; ppp.pkt.len++; dest++; crcDo(rxbuf[idx]^0x20); unstuff=0; } idx = (idx+1) & (BUFLEN-1); if (idx == end) break; } ppp.pkt.crc = crcG & 0xffff; if (ppp.pkt.crc == 0xf0b8) { // check for good CRC void determinePacketType(); // declaration only determinePacketType(); } else { // crc error debug(("CRC is %x Len is %d\n",ppp.pkt.crc,ppp.pkt.len)); for(int i=0;i<ppp.pkt.len;i++) debug(("%02x ", ppp.pkt.buf[i])); debug(("\n")); } } void dumpFrame() { for(int i=0;i<ppp.pkt.len;i++) debug(("%02x ", ppp.pkt.buf[i])); debug((" C=%02x %02x L=%d\n", ppp.pkt.crc&0xff, (ppp.pkt.crc>>8)&0xff, ppp.pkt.len)); } void hdlcPut(int ch) { // do hdlc handling of special (flag) characters if ( (ch<0x20) || (ch==0x7d) || (ch==0x7e) ) { pc.putc(0x7d); pc.putc(ch^0x20); } else { pc.putc(ch); } } void sendFrame(){ int crc = crcBuf(ppp.pkt.buf, ppp.pkt.len-2); // update crc ppp.pkt.buf[ ppp.pkt.len-2 ] = (~crc>>0); // fcs lo (crc) ppp.pkt.buf[ ppp.pkt.len-1 ] = (~crc>>8); // fcs hi (crc) pc.putc(0x7e); // hdlc start-of-frame "flag" for(int i=0;i<ppp.pkt.len;i++) hdlcPut( ppp.pkt.buf[i] ); pc.putc(0x7e); // hdlc end-of-frame "flag" } void ipRequestHandler(){ debug(("IPCP Conf ")); if ( ppp.pkt.buf[7] != 4 ) { debug(("Rej\n")); // reject if any options are requested ppp.pkt.buf[4]=4; sendFrame(); } else { debug(("Ack\n")); ppp.pkt.buf[4]=2; // ack the minimum sendFrame(); // acknowledge debug(("IPCP Ask\n")); // send our own request now ppp.pkt.buf[4]=1; // request no options ppp.pkt.buf[5]++; // next sequence sendFrame(); // this is our request } } void ipAckHandler(){ debug(("IPCP Grant\n")); } void ipNackHandler(){ debug(("IPCP Nack\n")); } void ipDefaultHandler(){ debug(("IPCP Other\n")); } void IPCPframe() { int code = ppp.pkt.buf[4]; // packet type is here switch (code) { case 1: ipRequestHandler(); break; case 2: ipAckHandler(); break; case 3: ipNackHandler(); break; default: ipDefaultHandler(); } } void UDPpacket() { char * udpPkt = ppp.pkt.buf+4; // udp packet start int headerSizeIP = (( udpPkt[0]&0xf)*4); char * udpBlock = udpPkt + headerSizeIP; // udp info start char * udpSrc = udpBlock; // source port char * udpDst = udpBlock+2; // destination port char * udpLen = udpBlock+4; // udp data length char * udpInf = udpBlock+8; // actual start of info int srcPort = (udpSrc[0]<<8) | udpSrc[1]; int dstPort = (udpDst[0]<<8) | udpDst[1]; char * srcIP = udpPkt+12; // udp src addr char * dstIP = udpPkt+16; // udp dst addr #define UDP_HEADER_SIZE 8 int udpLength = ((udpLen[0]<<8) | udpLen[1]) - UDP_HEADER_SIZE; // size of the actual udp data debug(("UDP %d.%d.%d.%d:%d ", srcIP[0],srcIP[1],srcIP[2],srcIP[3],srcPort)); debug(("%d.%d.%d.%d:%d ", dstIP[1],dstIP[1],dstIP[1],dstIP[1],dstPort)); debug(("Len %d ", udpLength)); int printSize = udpLength; if (printSize > 20) printSize = 20; // print only first 20 characters for (int i=0; i<printSize; i++) { char ch = udpInf[i]; if (ch>31 && ch<127) { debug(("%c", ch)); } else { debug(("_")); } } debug(("\n")); } int dataCheckSum(char * ptr, int len) { int sum=0; int placeHolder; if (len&1) { placeHolder = ptr[len-1]; ptr[len-1]=0; } // when length is odd zero stuff for (int i=0;i<len/2;i++) { int hi = *ptr; ptr++; int lo = *ptr; ptr++; int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 ); sum = sum + val; } sum = sum + (sum>>16); if (len&1) { ptr[len-1] = placeHolder; } // restore the last byte for odd lengths return ~sum; } void headerCheckSum() { int len =(ppp.pkt.buf[4]&0xf)*4; // length of header in bytes char * ptr = ppp.pkt.buf+4; // start of ip packet int sum=0; for (int i=0;i<len/2;i++) { int hi = *ptr; ptr++; int lo = *ptr; ptr++; int val = ( lo & 0xff ) | ( (hi<<8) & 0xff00 ); sum = sum + val; } sum = sum + (sum>>16); sum = ~sum; ppp.pkt.buf[14]= (sum>>8); ppp.pkt.buf[15]= (sum ); } void ICMPpacket() { // internet control message protocol char * ipPkt = ppp.pkt.buf+4; // ip packet start char * pktLen = ipPkt+2; int packetLength = (pktLen[0]<<8) | pktLen[1]; // icmp packet length int headerSizeIP = (( ipPkt[0]&0xf)*4); char * icmpType = ipPkt + headerSizeIP; // icmp data start char * icmpSum = icmpType+2; // icmp checksum #define ICMP_TYPE_PING_REQUEST 8 if ( icmpType[0] == ICMP_TYPE_PING_REQUEST ) { char * ipTTL = ipPkt+8; // time to live ipTTL[0]--; // decrement time to live char * srcAdr = ipPkt+12; char * dstAdr = ipPkt+16; int icmpIdent = (icmpType[4]<<8)|icmpType[5]; int icmpSequence = (icmpType[6]<<8)|icmpType[7]; debug(("ICMP PING %d.%d.%d.d %d.%d.%d.%d ", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3],dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3])); debug(("Ident %04x Sequence %04d ",icmpIdent,icmpSequence)); char src[4]; char dst[4]; memcpy(src, srcAdr,4); memcpy(dst, dstAdr,4); memcpy(srcAdr, dst,4); memcpy(dstAdr, src,4); // swap src & dest ip char * chkSum = ipPkt+10; chkSum[0]=0; chkSum[1]=0; headerCheckSum(); // new ip header checksum #define ICMP_TYPE_ECHO_REPLY 0 icmpType[0]=ICMP_TYPE_ECHO_REPLY; // icmp echo reply icmpSum[0]=0; icmpSum[1]=0; // zero the checksum for recalculation int icmpLength = packetLength - headerSizeIP; // length of ICMP data portion int sum = dataCheckSum( icmpType, icmpLength); // this checksum on icmp data portion icmpSum[0]=sum>>8; icmpSum[1]=sum; // new checksum for ICMP data portion int printSize = icmpLength-8; // exclude size of icmp header char * icmpData = icmpType+8; // the actual payload data is after the header if (printSize > 10) printSize = 10; // print up to 20 characters for (int i=0; i<printSize; i++) { char ch = icmpData[i]; if (ch>31 && ch<127) { debug(("%c",ch)); } else { debug(("_")); }} debug(("\n")); sendFrame(); // reply to the ping } else { debug(("ICMP type=%d \n", icmpType[0])); } } void IGMPpacket() { // internet group management protocol debug(("IGMP type=%d \n", ppp.pkt.buf[28])); } void dumpHeaderIP () { char * ipPkt = ppp.pkt.buf+4; // ip packet start char * version = ipPkt; // top 4 bits char * ihl = ipPkt; // bottom 4 bits char * dscp = ipPkt+1; // top 6 bits char * ecn = ipPkt+1; // lower 2 bits char * pktLen = ipPkt+2; // 2 bytes char * ident = ipPkt+4; // 2 bytes char * flags = ipPkt+6; // 2 bits char * ttl = ipPkt+8; // 1 byte char * protocol = ipPkt+9; // 1 byte char * headercheck= ipPkt+10; // 2 bytes char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes int versionIP = (version[0]>>4)&0xf; int headerSizeIP = (ihl[0]&0xf)*4; int dscpIP = (dscp[0]>>2)&0x3f; int ecnIP = ecn[0]&3; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length int identIP = (ident[0]<<8)|ident[1]; int flagsIP = flags[0]>>14&3; int ttlIP = ttl[0]; int protocolIP = protocol[0]; int checksumIP = (headercheck[0]<<8)|headercheck[1]; char srcIP [16]; snprintf(srcIP,16, "%d.%d.%d.%d", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3]); char dstIP [16]; snprintf(dstIP,16, "%d.%d.%d.%d", dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); debug(("IP %s %s v%d h%d d%d e%d L%d ",srcIP,dstIP,versionIP,headerSizeIP,dscpIP,ecnIP,packetLength)); if(0) { debug(("i%04x f%d t%d p%d C%04x\n",identIP,flagsIP,ttlIP,protocolIP,checksumIP)); } } void dumpHeaderTCP() { int ipHdrLen = (ppp.pkt.buf[4]&0xf)*4; // overall length of ip packet char * s = ppp.pkt.buf+4+ipHdrLen; // start of tcp packet char * seqtcp = s + 4; // 4 bytes char * acktcp = s + 8; // 4 bytes char * flagbitstcp = s + 12; // 9 bits int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]); int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]); int flags = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; int idx = 0; char flagInfo [40]; if (flags & (1<<0)) idx=snprintf(flagInfo+idx,40, "FIN "); if (flags & (1<<1)) idx=snprintf(flagInfo+idx,40, "SYN "); if (flags & (1<<2)) idx=snprintf(flagInfo+idx,40, "RST "); if (flags & (1<<3)) idx=snprintf(flagInfo+idx,40, "PSH "); if (flags & (1<<4)) idx=snprintf(flagInfo+idx,40, "ACK "); if (flags & (1<<5)) idx=snprintf(flagInfo+idx,40, "URG "); if (flags & (1<<6)) idx=snprintf(flagInfo+idx,40, "ECE "); if (flags & (1<<7)) idx=snprintf(flagInfo+idx,40, "CWR "); if (flags & (1<<8)) idx=snprintf(flagInfo+idx,40, "NS "); if(0) { debug(("Flag %s Seq %08x Ack %08x ", flagInfo, seq, ack)); } } void tcpHandler() { char * ipPkt = ppp.pkt.buf+4; // ip packet start char * headercheck= ipPkt+10; // 2 bytes char * ihl = ipPkt; // bottom 4 bits char * ident = ipPkt+4; // 2 bytes char * pktLen = ipPkt+2; // 2 bytes char * protocol = ipPkt+9; // 1 byte char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes int headerSizeIP = (ihl[0]&0xf)*4; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length ident[0] = ppp.ident>>8; ident[1] = ppp.ident>>0; // stuff in our ident int ipHdrLen = (ppp.pkt.buf[4]&0xf)*4; // length of ip header char * s = ppp.pkt.buf+4+ipHdrLen; // start of tcp packet char * srctcp = s + 0; // 2 bytes char * dsttcp = s + 2; // 2 bytes char * seqtcp = s + 4; // 4 bytes char * acktcp = s + 8; // 4 bytes char * offset = s + 12; // 4 bits char * flagbitstcp = s + 12; // 9 bits char * checksumtcp = s + 16; // 2 bytes int tcpSize = packetLength - headerSizeIP; int tcpHeaderLen = ((offset[0]>>4)&0x0f)*4; // size of tcp header only int dataLen = tcpSize - tcpHeaderLen; // data is what's left after the header int seq = (seqtcp[0]<<24)|(seqtcp[1]<<16)|(seqtcp[2]<<8)|(seqtcp[3]); int ack = (acktcp[0]<<24)|(acktcp[1]<<16)|(acktcp[2]<<8)|(acktcp[3]); char * dataStart = s + tcpHeaderLen; // start of data int flagsTCP = ((flagbitstcp[0]&1)<<8)|flagbitstcp[1]; #define TCP_FLAG_ACK (1<<4) #define TCP_FLAG_SYN (1<<1) #define TCP_FLAG_PSH (1<<3) #define TCP_FLAG_RST (1<<2) #define TCP_FLAG_FIN (1<<0) // a simple state machine to emulate basie TCP states (e.g. webserver) int dataLenOld = dataLen; // we are updating data len but still need to use it dataLen = 0; // reset the data length to prep for a short response if ( ((flagsTCP & ~TCP_FLAG_ACK) == 0) && ((flagsTCP & TCP_FLAG_ACK) != 0) ) { if (dataLenOld > 0) { // they sent data in the ack ack = seq + dataLenOld; // we update to show we know seq = ppp.seq; } else { if (ack <= ppp.seq) return; // just an empty ack ppp.seq = ack; // update our count ack = seq; seq = ppp.seq; } } else if ( (flagsTCP & TCP_FLAG_FIN) != 0 ) { // got FIN flagbitstcp[1] |= TCP_FLAG_ACK; // do a syn-ack ack = seq; seq = ppp.seq; } else if ( (flagsTCP & TCP_FLAG_SYN) != 0 ) { // got SYN flagbitstcp[1] |= TCP_FLAG_ACK; // do a syn-ack ack = seq + 1; seq = ppp.seq-1; } else if ( (flagsTCP & TCP_FLAG_PSH) != 0 ) { // respond to push with ack flagbitstcp[1] = TCP_FLAG_ACK; int temp = ack; ack = seq + dataLenOld; ppp.seq = temp; seq = temp; if ( strncmp(dataStart, "GET / HTTP/1.1", 14) == 0) { // check for web client dataLen = 3*32; // extend the data memset(dataStart,0, dataLen ); sprintf(dataStart,"HTTP/1.1 200 OK\r\nTransfer-Encoding: chunked; charset=utf-8\r\nF\r\nmbed-PPP-Blinky\r\n\r\n0\r\n\r\n"); } } // now we have to redo all the header sizes int newPacketSize = headerSizeIP + tcpHeaderLen + dataLen; pktLen[0] = (newPacketSize>>8); pktLen[1]=newPacketSize; // ip total packet size ppp.pkt.len = newPacketSize+6; // ppp packet length tcpSize = tcpHeaderLen + dataLen; // tcp packet size // redo all the header stuff acktcp[0]=ack>>24; acktcp[1]=ack>>16; acktcp[2]=ack>>8; acktcp[3]=ack>>0; // save ack seqtcp[0]=seq>>24; seqtcp[1]=seq>>16; seqtcp[2]=seq>>8; seqtcp[3]=seq>>0; // save seq char src[4]; char dst[4]; memcpy(src, srcAdr,4); memcpy(dst, dstAdr,4); memcpy(srcAdr, dst,4); memcpy(dstAdr, src,4); // swap ip address source/dest char psrc[2]; char pdst[2]; memcpy(psrc, srctcp,2); memcpy(pdst, dsttcp,2); memcpy(srctcp, pdst,2); memcpy(dsttcp, psrc,2); // swap ip port source/dest headercheck[0]=0; headercheck[1]=0; headerCheckSum(); // redo the ip header checksum char pseudoHeader[12]; int sum; char temp[12]; // for the terrible pseudoheader checksum memcpy( pseudoHeader+0, srcAdr, 8); // source and destination addresses. pseudoHeader[8]=0; pseudoHeader[9]=protocol[0]; pseudoHeader[10]=tcpSize>>8; pseudoHeader[11]=tcpSize; memcpy(temp, s-12, 12); // keep a copy memcpy( s-12, pseudoHeader, 12); // put the header on the tcp packet checksumtcp[0]=0; checksumtcp[1]=0; sum=dataCheckSum(s-12,tcpSize+12); // update TCP checksum checksumtcp[0]=sum>>8; checksumtcp[1]=sum; memcpy( s-12, temp, 12); // overwrite the pseudoheader sendFrame(); // return the TCP packet } void dumpDataTCP() { int ipPktLen = (ppp.pkt.buf[6]<<8)|ppp.pkt.buf[7]; // overall length of ip packet int ipHeaderLen = (ppp.pkt.buf[4]&0xf)*4; // length of ip header int tcpHeaderLen = ((ppp.pkt.buf[4+ipHeaderLen+12]>>4)&0xf)*4;; // length of tcp header int dataLen = ipPktLen - ipHeaderLen - tcpHeaderLen; // data is what's left after the two headers if(0) { debug(("TCP %d ipHeader %d tcpHeader %d Data %d\n", ipPktLen, ipHeaderLen, tcpHeaderLen, dataLen)); } // 1 for more verbose if (dataLen > 0) { debug(("%s\n",ppp.pkt.buf+4+ipHeaderLen+tcpHeaderLen)); } // show the data } void TCPpacket(){ char * ipPkt = ppp.pkt.buf+4; // ip packet start char * version = ipPkt; // top 4 bits char * ihl = ipPkt; // bottom 4 bits char * dscp = ipPkt+1; // top 6 bits char * ecn = ipPkt+1; // lower 2 bits char * pktLen = ipPkt+2; // 2 bytes char * ident = ipPkt+4; // 2 bytes char * flags = ipPkt+6; // 2 bits char * ttl = ipPkt+8; // 1 byte char * protocol = ipPkt+9; // 1 byte char * headercheck= ipPkt+10; // 2 bytes char * srcAdr = ipPkt+12; // 4 bytes char * dstAdr = ipPkt+16; // 4 bytes = total of 20 bytes int versionIP = (version[0]>>4)&0xf; int headerSizeIP = (ihl[0]&0xf)*4; int dscpIP = (dscp[0]>>2)&0x3f; int ecnIP = ecn[0]&3; int packetLength = (pktLen[0]<<8)|pktLen[1]; // ip total packet length int identIP = (ident[0]<<8)|ident[1]; int flagsIP = flags[0]>>14&3; int ttlIP = ttl[0]; int protocolIP = protocol[0]; int checksumIP = (headercheck[0]<<8)|headercheck[1]; char srcIP [16]; snprintf(srcIP,16, "%d.%d.%d.%d", srcAdr[0],srcAdr[1],srcAdr[2],srcAdr[3]); char dstIP [16]; snprintf(dstIP,16, "%d.%d.%d.%d", dstAdr[0],dstAdr[1],dstAdr[2],dstAdr[3]); debug(("IP %s %s v%d h%d d%d e%d L%d ",srcIP,dstIP,versionIP,headerSizeIP,dscpIP,ecnIP,packetLength)); debug(("i%04x f%d t%d p%d C%04x\n",identIP,flagsIP,ttlIP,protocolIP,checksumIP)); dumpHeaderTCP(); dumpDataTCP(); tcpHandler(); } void otherProtocol() { debug(("Other IP protocol")); } void IPframe() { int protocol = ppp.pkt.buf[13]; switch (protocol) { case 1: ICMPpacket(); break; case 2: IGMPpacket(); break; case 17: UDPpacket(); break; case 6: TCPpacket(); break; default: otherProtocol(); } } void LCPconfReq() { debug(("LCP Config ")); if (ppp.pkt.buf[7] != 4) { ppp.pkt.buf[4]=4; // allow only no options debug(("Reject\n")); sendFrame(); } else { ppp.pkt.buf[4]=2; // ack zero conf debug(("Ack\n")); sendFrame(); debug(("LCP Ask\n")); ppp.pkt.buf[4]=1; // request no options sendFrame(); } } void LCPconfAck() { debug(("LCP Ack\n")); } void LCPend(){ debug(("LCP End\n")); ppp.online=0; // start hunting for connect string again ppp.pkt.buf[4]=6; sendFrame(); // acknowledge } void LCPother(){ debug(("LCP Other\n")); dumpFrame(); } void LCPframe(){ int code = ppp.pkt.buf[4]; switch (code) { case 1: LCPconfReq(); break; // config request case 2: LCPconfAck(); break; // config ack case 5: LCPend(); break; // end connection default: LCPother(); } } void discardedFrame() { debug(("Dropping frame %02x %02x %02x %02x\n", ppp.pkt.buf[0],ppp.pkt.buf[1],ppp.pkt.buf[2],ppp.pkt.buf[3])); } void determinePacketType() { if ( ppp.pkt.buf[0] != 0xff ) { debug(("byte0 != ff\n")); return;} if ( ppp.pkt.buf[1] != 3 ) { debug(("byte1 != 3\n")); return;} if ( ppp.pkt.buf[3] != 0x21 ) { debug(("byte2 != 21\n")); return;} int packetType = ppp.pkt.buf[2]; switch (packetType) { case 0xc0: LCPframe(); break; // link control case 0x80: IPCPframe(); break; // IP control case 0x00: IPframe(); break; // IP itself default: discardedFrame(); } } void scanForConnectString() { if ( ppp.online==0 ) { char * clientFound = strstr( (char *)rxbuf, "CLIENTCLIENT" ); // look for PC string if( clientFound ) { strcpy( clientFound, "FOUND!FOUND!" ); // overwrite so we don't get fixated pc.printf("CLIENTSERVER"); // respond to PC ppp.online=1; // we can stop looking for the string debug(("Connect string found\n")); } } } int myIdent = 0; int main() { pc.baud(115200); // USB virtual serial port xx.baud(115200); // second serial port for debug(((((((( messages xx.puts("\x1b[2J\x1b[HReady\n"); // VT100 code for clear screen & home pppInitStruct(); // initialize all the PPP properties pc.attach(&rxHandler,Serial::RxIrq); // start the receive handler int frameStartIndex, frameEndIndex; int frameBusy=0; while(1) { if ( ppp.online==0 ) scanForConnectString(); // try to connect while ( rxbufNotEmpty() ) { int rx = pc_getBuf(); if (frameBusy) { if (rx==FRAME_7E) { frameBusy=0; // done gathering frame frameEndIndex=ppp.rx.tail-1; // remember where frame ends processFrame(frameStartIndex, frameEndIndex); } } else { if (rx==FRAME_7E) { frameBusy=1; // start gathering frame frameStartIndex=ppp.rx.tail; // remember where frame started } } } } }