Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
challenge.cpp
- Committer:
- jamesmcildowietfl
- Date:
- 2022-05-17
- Revision:
- 18:d28d458824d4
- Parent:
- 15:4976d145fbd9
- Child:
- 23:c25af9a7db8d
File content as of revision 18:d28d458824d4:
#include <mbed.h>
#include "definitions.h"
#include "challenge.h"
#include "remoteControl.h"
#include "dashboard.h"
#include "motor.h"
ChallengeMode::ChallengeMode(InterruptIn& autoStopTrigger, Dashboard& dashboard, Remote& remote, Motor& motor1) :
_autoStopTrigger(autoStopTrigger), _dashboard(dashboard), _remote(remote), _motor1(motor1) {
// CONSTRUCTOR
// ATTACH AUTOSTOP INTERRUPT
_autoStopTrigger.rise(this, &ChallengeMode::autoStopTriggered);
// FUNCTIONS
regenThrottleOff(); // Make sure regen throttle is off
autoStopOff(); // Make sure auto-stop is off
innovationOff(); // make sure innovation (collision detection mode) is off
// VARIABLES
contactBatt = 1;
// Auto-Stop Challenge
autoStopActive = false; // Flag is auto-stop mode is active
autoStopInProgress = false; // Flag if auto-stop track-side sensor has been detected and auto-stop is in progress
autoStopCruiseSpeed = 0; // Speed of loco at time of auto-stop trackside sensor triggering so loco can maintain this speed without operator input
autoStopThrottle = 0; // Throttle rate applied at the time of triggering autostop
targetDistance = 25.00f; // How far in meters to bring the loco to a stop
remainingDistance = targetDistance; // How far the loco has left to go before reaching target distance
decelerationGradient = 0; // Gradient of y=mx+c linear speed-distance curve that is used in this auto-stop version
requiredSpeed = 0; // How fast the loco should be going according to y=mx+c line
// Innovation Challenge
innovationDistanceLimit = 1500; // Stopping distance in mm from IR sensors
stopLoco = false; // Flag to stop the loco when obstacle has been detected
// IR Output voltages at various distances (for calibration purposes)
voltageAt5500 = 0;
voltageAt5000 = 0;
voltageAt4500 = 0;
voltageAt4000 = 0;
voltageAt3500 = 0;
voltageAt3000 = 0;
voltageAt2500 = 0;
voltageAt2000 = 0;
voltageAt1500 = 0;
voltageAt1000 = 2.2f;
voltageAt500 = 3.0f;
} // CONSTRUCTOR
void ChallengeMode::regenThrottleOn() {
// OPEN THE BATTERY CONTACTOR SO POWER IS DELIVERED BY SUPERCAPS
contactCapCharge = 0; // Open supercap charging contactor to prevent charging
contactBatt = 0; // Open battery contactor so all power comes from supercaps
regenThrottleActive = true; // Flag to indicate that regen throttling is on
pc.printf("Regen Throttle On\r\n");
}
void ChallengeMode::regenThrottleOff() {
// CLOSE THE BATTERY CONTACTOR
if (regenBrakingActive == false) { // If regen braking is not active and using the supercaps, allow capacitor to pre-charge from batteries
contactCapCharge = 1; // Close the supercap charging contactor
}
contactBatt = 1; // Close the battery contactor so power comes from batteries
regenThrottleActive = false; // Flag to indicate that regen throttling is off
pc.printf("Regen Throttle Off\r\n");
}
bool ChallengeMode::regenBrakingOn() {
// TURN ON REGEN BRAKING
// if (superCapVoltage == 0) { // If super caps are not full
// contactCapCharge = 0; // Open the super cap pre-cahrging contactor
// contactBatt = 0; // Open battery contactor so all power comes from supercaps
regenBrakingActive = true; // Flag to indicate that regen throttling is on
pc.printf("Regen Braking On\r\n");
return 1; // Return 1 if regen braking switched on
// }
// else {
// return 0; // Return 0 is regen braking didnt turn on due to full supercaps
// }
}
void ChallengeMode::regenBrakingOff() {
// TURN OFF REGEN BRAKING
if (regenThrottleActive == false) { // If regen throttle is not active and using the supercaps, allow capacitor to pre-charge from batteries
contactCapCharge = 1; // Close the supercap pre-charge contactor
}
regenBrakingActive = false; // Flag that regen braking is off
contactBatt = 1; // Close battery contactor so all power comes from supercaps
pc.printf("Regen Braking Off\r\n");
}
void ChallengeMode::autoStopOn() {
// TURN ON AUTOSTOP MODE
autoStopActive = true; // Flag that auto-stop mode is on
pc.printf("Auto-Stop On\r\n");
}
void ChallengeMode::autoStopTriggered() {
// INTERRUPT FUNCTION CALLED WHEN TRACK-SIDE TRIGGER HAS BEEN DETECTED
if (autoStopActive == true && autoStopInProgress == false) { // If auto-stop mode is on and signal has not yet been detected
autoStopInProgress = true; // Flag that auto-stop is in progress and fully autonomous
autoStopCruiseSpeed = _dashboard.currentSpeed; // Set the speed the loco was going at the point of triggering
autoStopThrottle = _remote.throttle;
_dashboard.currentDistance = 0.00f; // Reset the distance-travelled counter to 0
// timeToReachTarget = targetDistance / (autoStopCruiseSpeed * 1000 / 3600); // Time(s) = Distance(m) / Speed(converted to m/s)
decelerationGradient = (autoStopCruiseSpeed - 1) / (targetDistance - 1); // m = y / x → to get to 1kph at 24m, leaving ~ 4 seconds to get to target of 25m
pc.printf("Auto-Stop Triggered\r\n");
}
}
void ChallengeMode::autoStopControl() {
// FUNCTION TO MANAGE THE LOCO THROTTLE AND BRAKING WHEN AUTO-STOPPING
remainingDistance = targetDistance - _dashboard.currentDistance; // Calculate remaining distance from target distance
// timeToReachTarget = int(_dashboard.currentSpeed) > 0 ? remainingDistance / _dashboard.currentSpeed : 999;
// FOLLOWING DECELERATION GRADIENT
if (remainingDistance > 2.0f) { // IF OVER 3M FROM TARGET, CONTROL SPEED (1m + 2m sensor to nose of train)
_motor1.throttle(0.3f); // Apply 30% throttle
//requiredSpeed = (decelerationGradient * _dashboard.currentDistance) + autoStopCruiseSpeed; // (y = mx + c)
//
// if (_dashboard.currentSpeed < requiredSpeed) { // If train is below the speed it should be, apply 30% throttle and no braking
//// _motor1.throttle(0.3f);
//// _motor2.throttle(0.1f);
//// _motor1.brake(0.0f);
//// _motor2.brake(0.0f);
//
// brakeValve32 = 1;
// }
// else { // If loco is going faster than is should be
// int speedDifference = _dashboard.currentSpeed - requiredSpeed; // Work out how much faster it is going and apply a proportional amount of motor braking
//
// _motor1.throttle(0.0f); // Turn off throttle
//// _motor2.throttle(0.0f);
//
// brakeValve32 = 0;
// if (pressureSwitch1.read() == 0) {
// brakeValve22 = 0;
// pc.printf("Pressure 1 Reached");
// }
//
// switch (speedDifference) { // MOTOR BRAKING
// case 1:
// _motor1.brake(0.1f);
//// _motor2.brake(0.1f);
// break;
//
// case 2:
// _motor1.brake(0.2f);
//// _motor2.brake(0.2f);
// break;
//
// case 3:
// _motor1.brake(0.3f);
//// _motor2.brake(0.3f);
// break;
//
// case 4:
// _motor1.brake(0.4f);
//// _motor2.brake(0.4f);
// break;
//
// case 5:
// _motor1.brake(0.5f);
//// _motor2.brake(0.5f);
// break;
//
// case 6:
// _motor1.brake(0.6f);
//// _motor2.brake(0.6f);
// break;
//
// case 7:
// _motor1.brake(0.7f);
//// _motor2.brake(0.7f);
// break;
//
// case 8:
// _motor1.brake(0.8f);
//// _motor2.brake(0.8f);
// break;
//
// case 9:
// _motor1.brake(0.9f);
//// _motor2.brake(0.9f);
// break;
//
// default:
// _motor1.brake(1.0f);
//// _motor2.brake(1.0f);
// break;
// } // switch
// }// else
}// if
else { // IF REACHED STOPPING TARGET AREA
rtc_Trigger = 0; // APPLY EMERGENCY BRAKES
// if (remainingDistance > 0.2f) { // If more than 20cm to go, stay at 1kph
//
// }
// else { // If less than 20cm from target apply full mechanical brakes and turn off throttle
// _motor1.throttle(0.0f);
//// _motor2.throttle(0.0f);
//
// // MECHANICAL BRAKES
// brakeValve32 = 1;
// if (pressureSwitch3 == 0) {
// brakeValve22 = 0;
// }
// else {
// brakeValve22 = 1;
// }
// }
}
pc.printf("remainingDistance %f\r\n", remainingDistance);
// pc.printf("timeToReachTarget %f\r\n", timeToReachTarget);
}
void ChallengeMode::autoStopOff() {
// TURN OFF AUTOSTOP MODE
autoStopActive = false; // CLEAR AUTOSTOP MODE FLAG
autoStopInProgress = false; // CLEAR AUTOSTOPPING
rtc_Trigger = 1;
pc.printf("Auto-Stop Off\r\n");
}
void ChallengeMode::innovationOn() {
// TURN ON INNOVATION MODE
innovationActive = true;
stopLoco = false;
rtc_Trigger = 1;
_motor1.setSpeedMode(1); // SET MOTORS TO INCH FORWARD MODE
// _motor2.setSpeedMode(1);
pc.printf("Innovation On\r\n");
}
void ChallengeMode::innovationOff() {
// TURN OFF INNOVATION MODE
innovationActive = false;
stopLoco = false;
rtc_Trigger = 1;
_motor1.setSpeedMode(3); // SET MOTOR SPEED LIMIT TO MAX
pc.printf("Innovation Off\r\n");
}
int ChallengeMode::innovationControl(int requestedThrottle) {
// CONTROL THE TRAIN THROTTLING AND BRAKING
int count = 0;
if (irSensor_1 > voltageAt1000 / 3.3f) { count++; }
if (irSensor_2 > voltageAt1000 / 3.3f) { count++; }
if (irSensor_3 > voltageAt1000 / 3.3f ) { count++; }
if (count >= 2) {
stopLoco = true;
}
if (stopLoco == true) { // IF SENSORS INDICATE TRAIN SHOULD STOP
// // APPLY MECHANICAL BRAKES
// brakeValve32 = 0;
// brakeValve22 = 1;
// APPLY E-BRAKE
rtc_Trigger = 0;
pc.printf("Obstacle Detected\r\n");
return 0; // RETURN THROTTLE = 0 TO INDICATE TRAIN SHOULD STOP
}
else {
return requestedThrottle; // OTHERWISE THROTTLE = USER REQUEST
}
}