ROME_P5
Dependencies: mbed
Controller.cpp
- Committer:
- Inaueadr
- Date:
- 2018-04-27
- Revision:
- 0:29be10cb0afc
File content as of revision 0:29be10cb0afc:
/* * Controller.cpp * Copyright (c) 2018, ZHAW * All rights reserved. */ #include <cmath> #include "Controller.h" using namespace std; const float Controller::PERIOD = 0.001f; // period of control task, given in [s] const float Controller::PI = 3.14159265f; // the constant PI const float Controller::WHEEL_DISTANCE = 0.170f; // distance between wheels, given in [m] const float Controller::WHEEL_RADIUS = 0.0375f; // radius of wheels, given in [m] const float Controller::COUNTS_PER_TURN = 1200.0f; // resolution of encoder counter const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // frequency of lowpass filter for actual speed values, given in [rad/s] const float Controller::KN = 40.0f; // speed constant of motor, given in [rpm/V] const float Controller::KP = 0.2f; // speed controller gain, given in [V/rpm] const float Controller::MAX_VOLTAGE = 12.0f; // supply voltage for power stage in [V] const float Controller::MIN_DUTY_CYCLE = 0.02f; // minimum allowed value for duty cycle (2%) const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximum allowed value for duty cycle (98%) /** * Creates and initializes a Controller object. * @param pwmLeft a pwm output object to set the duty cycle for the left motor. * @param pwmRight a pwm output object to set the duty cycle for the right motor. * @param counterLeft an encoder counter object to read the position of the left motor. * @param counterRight an encoder counter object to read the position of the right motor. */ Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) { // initialize periphery drivers pwmLeft.period(0.00005f); pwmLeft.write(0.5f); pwmRight.period(0.00005f); pwmRight.write(0.5f); // initialize local variables translationalMotion.setProfileVelocity(1.5f); translationalMotion.setProfileAcceleration(1.5f); translationalMotion.setProfileDeceleration(3.0f); rotationalMotion.setProfileVelocity(3.0f); rotationalMotion.setProfileAcceleration(15.0f); rotationalMotion.setProfileDeceleration(15.0f); translationalVelocity = 0.0f; rotationalVelocity = 0.0f; actualTranslationalVelocity = 0.0f; actualRotationalVelocity = 0.0f; previousValueCounterLeft = counterLeft.read(); previousValueCounterRight = counterRight.read(); speedLeftFilter.setPeriod(PERIOD); speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); speedRightFilter.setPeriod(PERIOD); speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); desiredSpeedLeft = 0.0f; desiredSpeedRight = 0.0f; actualSpeedLeft = 0.0f; actualSpeedRight = 0.0f; x = 0.0f; y = 0.0f; alpha = 0.0f; // start periodic task ticker.attach(callback(this, &Controller::run), PERIOD); } /** * Deletes the Controller object and releases all allocated resources. */ Controller::~Controller() { ticker.detach(); } /** * Sets the desired translational velocity of the robot. * @param velocity the desired translational velocity, given in [m/s]. */ void Controller::setTranslationalVelocity(float velocity) { this->translationalVelocity = velocity; } /** * Sets the desired rotational velocity of the robot. * @param velocity the desired rotational velocity, given in [rad/s]. */ void Controller::setRotationalVelocity(float velocity) { this->rotationalVelocity = velocity; } /** * Gets the actual translational velocity of the robot. * @return the actual translational velocity, given in [m/s]. */ float Controller::getActualTranslationalVelocity() { return actualTranslationalVelocity; } /** * Gets the actual rotational velocity of the robot. * @return the actual rotational velocity, given in [rad/s]. */ float Controller::getActualRotationalVelocity() { return actualRotationalVelocity; } /** * Sets the actual x coordinate of the robots position. * @param x the x coordinate of the position, given in [m]. */ void Controller::setX(float x) { this->x = x; } /** * Gets the actual x coordinate of the robots position. * @return the x coordinate of the position, given in [m]. */ float Controller::getX() { return x; } /** * Sets the actual y coordinate of the robots position. * @param y the y coordinate of the position, given in [m]. */ void Controller::setY(float y) { this->y = y; } /** * Gets the actual y coordinate of the robots position. * @return the y coordinate of the position, given in [m]. */ float Controller::getY() { return y; } /** * Sets the actual orientation of the robot. * @param alpha the orientation, given in [rad]. */ void Controller::setAlpha(float alpha) { this->alpha = alpha; } /** * Gets the actual orientation of the robot. * @return the orientation, given in [rad]. */ float Controller::getAlpha() { return alpha; } /** * This method is called periodically by the ticker object and contains the * algorithm of the speed controller. */ void Controller::run() { // calculate the planned velocities using the motion planner translationalMotion.incrementToVelocity(translationalVelocity, PERIOD); rotationalMotion.incrementToVelocity(rotationalVelocity, PERIOD); // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model desiredSpeedLeft = (translationalMotion.velocity-WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI; desiredSpeedRight = -(translationalMotion.velocity+WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI; // calculate actual speed of motors in [rpm] short valueCounterLeft = counterLeft.read(); short valueCounterRight = counterRight.read(); short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft; short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight; previousValueCounterLeft = valueCounterLeft; previousValueCounterRight = valueCounterRight; actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f); actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f); // calculate motor phase voltages float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN; float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN; // calculate, limit and set duty cycles float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE; if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE; else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE; pwmLeft.write(dutyCycleLeft); float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE; if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE; else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE; pwmRight.write(dutyCycleRight); // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*PI/60.0f*WHEEL_RADIUS/2.0f; actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE; // calculate the actual robot pose float deltaTranslation = actualTranslationalVelocity*PERIOD; float deltaOrientation = actualRotationalVelocity*PERIOD; x += cos(alpha+deltaOrientation)*deltaTranslation; y += sin(alpha+deltaOrientation)*deltaTranslation; float alpha = this->alpha+deltaOrientation; while (alpha > PI) alpha -= 2.0f*PI; while (alpha < -PI) alpha += 2.0f*PI; this->alpha = alpha; }