Code used for Sensor Expo 2016 - Balloon Game. More details can be found here: https://github.com/ROHMUSDC/ROHM-SensorExpo2016-Pressure-Sensor-Demo/

Dependencies:   BLE_API mbed nRF51822

Fork of Nordic_UART_TEMPLATE_ROHM_SHLD1Update by ROHMUSDC

ROHM Balloon Game Demo Code featured at Sensors Expo 2016

This code was written to be used with the Nordic Semiconductor nRF51-DK.

This Code allows the user to configure two known pressure distances and save pressure readings onto the application. Then it will automatically extrapolate these values and allow the user to see the height of the board. When connected to a balloon, greater heights can be achieved and the board will return the current height of the board.

Additional information about the ROHM MultiSensor Shield Board can be found at the following link: https://github.com/ROHMUSDC/ROHM-SensorExpo2016-Pressure-Sensor-Demo/

For code example for the ROHM SENSORSHLD0-EVK-101, please see the following link: https://developer.mbed.org/teams/ROHMUSDC/code/ROHMSensorShield_BALOONGAME/

Operation

See Github Repositoy for additional information on how to operate this demo application.

Supported ROHM Sensor Devices

  • BM1383GLV Pressure Sensor

Questions/Feedback

Please feel free to let us know any questions/feedback/comments/concerns on the ROHM shield implementation by contacting the following e-mail:

main.cpp

Committer:
kbahar3
Date:
2015-12-18
Revision:
7:71046927a0e9
Parent:
6:6860e53dc7ae
Child:
8:2a19622864c2

File content as of revision 7:71046927a0e9:

/* 
 * mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
 /*
 * Code Example for ROHM Mutli-Sensor Shield on the Nordic Semiconductor nRF51-DK
 * 
 *  Description: This Applications interfaces ROHM's Multi-Sensor Shield Board with the Nordic nRF51-DK
 *  This Code supports the following sensor devices on the shield:
 *      > BDE0600G Temperature Sensor
 *      > BM1383GLV Pressure Sensor
 *      > BU52014 Hall Sensor
 *      > ML8511 UV Sensor
 *      > RPR-0521 ALS/PROX Sensor
 *      > BH1745NUC Color Sensor
 *      > KMX62 Accel/Mag Sensor
 *      > KX122 Accel Sensor
 *      > KXG03 Gyro (Currently Unavailable as IC hasn't docked yet)
 *
 *  New Code: 
 *      Added Variable Initialization for utilizing ROHM Sensors
 *      Added a Section in "Main" to act as initialization
 *      Added to the "Periodic Callback" to read sensor data and return to Phone/Host
 *  
 *  Additional information about the ROHM MultiSensor Shield Board can be found at the following link:
 *      https://github.com/ROHMUSDC/ROHM_SensorPlatform_Multi-Sensor-Shield
 * 
 *  Last Upadtaed: 9/28/15 
 *  Author: ROHM USDC
 *  Contact Information: engineering@rohmsemiconductor.com
 */

#define nRF52DevKit

#define AnalogTemp          //BDE0600, Analog Temperature Sensor
#define AnalogUV            //ML8511, Analog UV Sensor
#define HallSensor          //BU52011, Hall Switch Sensor
#define RPR0521             //RPR0521, ALS/PROX Sensor
#define KMX62               //KMX61, Accel/Mag Sensor
#define Color               //BH1745, Color Sensor
#define KX122               //KX122, Accelerometer Sensor
#define Pressure            //BM1383, Barometric Pressure Sensor
#define KXG03               //KXG03, Gyroscopic Sensor

#include "mbed.h"
#include "BLEDevice.h"
#include "UARTService.h"
#include "nrf_temp.h"
#include "I2C.h"

#define MAX_REPLY_LEN           (UARTService::BLE_UART_SERVICE_MAX_DATA_LEN)    //Actually equal to 20
#define SENSOR_READ_INTERVAL_S  (1.0F) 
#define ADV_INTERVAL_MS         (1000UL)
#define UART_BAUD_RATE          (19200UL)
#define DEVICE_NAME             ("DEMO SENSOR") // This can be read AFTER connecting to the device.
#define SHORT_NAME              ("ROHMSHLD")    // Keep this short: max 8 chars if a 128bit UUID is also advertised.
#define DEBUG(...)              { m_serial_port.printf(__VA_ARGS__); }

// Function Prototypes
void PBTrigger();               //Interrupt function for PB4

// Global Variables
BLEDevice   m_ble;
Serial      m_serial_port(p9, p11);  // TX pin, RX pin Original
//Serial      m_serial_port(p8, p10);  // TX pin, RX pin 
DigitalOut  m_cmd_led(LED1);
DigitalOut  m_error_led(LED2);
UARTService *m_uart_service_ptr;
DigitalIn   testButton(p20);    //Original
//DigitalIn   testButton(p19);
InterruptIn sw4Press(p20);      //Original
//InterruptIn sw4Press(p19);  
I2C         i2c(p30,p7);  //Original DK Kit
//I2C         i2c(p26,p27);
bool        RepStart = true;
bool        NoRepStart = false;
int         i = 1;

//Sensor Variables
#ifdef AnalogTemp
AnalogIn    BDE0600_Temp(p3);   //Original Dev Kit
//AnalogIn    BDE0600_Temp(p28);
uint16_t    BDE0600_Temp_value;
float       BDE0600_output;
#endif

#ifdef AnalogUV
AnalogIn    ML8511_UV(p5);    //Original Dev Kit
//AnalogIn    ML8511_UV(p30);
uint16_t    ML8511_UV_value;
float       ML8511_output;
#endif

#ifdef HallSensor
DigitalIn   Hall_GPIO0(p14);  //Original Dev Kit
DigitalIn   Hall_GPIO1(p15);  //Original Dev Kit
//DigitalIn   Hall_GPIO0(p13);
//DigitalIn   Hall_GPIO1(p14);

int         Hall_Return1;
int         Hall_Return0;
#endif

#ifdef RPR0521
int         RPR0521_addr_w = 0x70;
int         RPR0521_addr_r = 0x71;

char        RPR0521_ModeControl[2] = {0x41, 0xE6};  
char        RPR0521_ALSPSControl[2] = {0x42, 0x03};
char        RPR0521_Persist[2] = {0x43, 0x20};
char        RPR0521_Addr_ReadData = 0x44;
char        RPR0521_Content_ReadData[6];

int         RPR0521_PS_RAWOUT = 0;
float       RPR0521_PS_OUT = 0;
int         RPR0521_ALS_D0_RAWOUT = 0;
int         RPR0521_ALS_D1_RAWOUT = 0;
float       RPR0521_ALS_DataRatio = 0;
float       RPR0521_ALS_OUT = 0;
#endif

#ifdef KMX62
int         KMX62_addr_w = 0x1C;
int         KMX62_addr_r = 0x1D;

char        KMX62_CNTL2[2] = {0x3A, 0x5F};
char        KMX62_Addr_Accel_ReadData = 0x0A;
char        KMX62_Content_Accel_ReadData[6];
char        KMX62_Addr_Mag_ReadData = 0x10;
char        KMX62_Content_Mag_ReadData[6];

short int   MEMS_Accel_Xout = 0;
short int   MEMS_Accel_Yout = 0;
short int   MEMS_Accel_Zout = 0;
double      MEMS_Accel_Conv_Xout = 0;
double      MEMS_Accel_Conv_Yout = 0;
double      MEMS_Accel_Conv_Zout = 0;
short int   MEMS_Mag_Xout = 0;
short int   MEMS_Mag_Yout = 0;
short int   MEMS_Mag_Zout = 0;
float       MEMS_Mag_Conv_Xout = 0;
float       MEMS_Mag_Conv_Yout = 0;
float       MEMS_Mag_Conv_Zout = 0;
#endif

#ifdef Color
int         BH1745_addr_w = 0x72;
int         BH1745_addr_r = 0x73;

char        BH1745_persistence[2] = {0x61, 0x03};
char        BH1745_mode1[2] = {0x41, 0x00};
char        BH1745_mode2[2] = {0x42, 0x92};
char        BH1745_mode3[2] = {0x43, 0x02};

char        BH1745_Content_ReadData[6];
char        BH1745_Addr_color_ReadData = 0x50;

int         BH1745_Red;
int         BH1745_Blue;
int         BH1745_Green;

#endif

#ifdef KX122
int         KX122_addr_w = 0x3C;
int         KX122_addr_r = 0x3D;

char        KX122_Accel_CNTL1[2] = {0x18, 0x41};
char        KX122_Accel_ODCNTL[2] = {0x1B, 0x02};
char        KX122_Accel_CNTL3[2] = {0x1A, 0xD8};
char        KX122_Accel_TILT_TIMER[2] = {0x22, 0x01};
char        KX122_Accel_CNTL2[2] = {0x18, 0xC1};

char        KX122_Content_ReadData[6];
char        KX122_Addr_Accel_ReadData = 0x06;           

float       KX122_Accel_X;
float       KX122_Accel_Y;                               
float       KX122_Accel_Z;

short int   KX122_Accel_X_RawOUT = 0;
short int   KX122_Accel_Y_RawOUT = 0;
short int   KX122_Accel_Z_RawOUT = 0;

int         KX122_Accel_X_LB = 0;
int         KX122_Accel_X_HB = 0;
int         KX122_Accel_Y_LB = 0;
int         KX122_Accel_Y_HB = 0;
int         KX122_Accel_Z_LB = 0;
int         KX122_Accel_Z_HB = 0;
#endif

#ifdef Pressure
int         Press_addr_w = 0xBA;
int         Press_addr_r = 0xBB;

char        PWR_DOWN[2] = {0x12, 0x01};
char        SLEEP[2] = {0x13, 0x01};
char        Mode_Control[2] = {0x14, 0xC4};

char        Press_Content_ReadData[6];
char        Press_Addr_ReadData =0x1A;

int         BM1383_Temp_highByte;
int         BM1383_Temp_lowByte;
int         BM1383_Pres_highByte;
int         BM1383_Pres_lowByte;
int         BM1383_Pres_leastByte; 

short int   BM1383_Temp_Out;
float       BM1383_Temp_Conv_Out;
float       BM1383_Pres_Conv_Out;

float       BM1383_Var;
float       BM1383_Deci;
#endif

#ifdef KXG03
int         j = 11;
int         t = 1;
short int   aveX = 0;
short int   aveX2 = 0;
short int   aveX3 = 0;
short int   aveY = 0;
short int   aveY2 = 0;
short int   aveY3 = 0;
short int   aveZ = 0;
short int   aveZ2 = 0;
short int   aveZ3 = 0;
float       ave22;
float       ave33;
int         KXG03_addr_w = 0x9C;   //write 
int         KXG03_addr_r = 0x9D;   //read 
char        KXG03_STBY_REG[2] = {0x43, 0x00};
char        KXG03_Content_ReadData[6];
//char        KXG03_Content_Accel_ReadData[6];
char        KXG03_Addr_ReadData = 0x02;
//char        KXG03_Addr_Accel_ReadData = 0x08;
float       KXG03_Gyro_XX;
float       KXG03_Gyro_X;
float       KXG03_Gyro_Y;                               
float       KXG03_Gyro_Z;
short int   KXG03_Gyro_X_RawOUT = 0;
short int   KXG03_Gyro_Y_RawOUT = 0; 
short int   KXG03_Gyro_Z_RawOUT = 0;
short int   KXG03_Gyro_X_RawOUT2 = 0;
short int   KXG03_Gyro_Y_RawOUT2 = 0; 
short int   KXG03_Gyro_Z_RawOUT2 = 0;  
float       KXG03_Accel_X;
float       KXG03_Accel_Y;                               
float       KXG03_Accel_Z;  
short int   KXG03_Accel_X_RawOUT = 0;
short int   KXG03_Accel_Y_RawOUT = 0;
short int   KXG03_Accel_Z_RawOUT = 0;       
#endif

/**
 * This callback is used whenever a disconnection occurs.
 */
void disconnectionCallback(Gap::Handle_t handle, Gap::DisconnectionReason_t reason)
{
    switch (reason) {
    case Gap::REMOTE_USER_TERMINATED_CONNECTION:
        DEBUG("Disconnected (REMOTE_USER_TERMINATED_CONNECTION)\n\r");
        break;
    case Gap::LOCAL_HOST_TERMINATED_CONNECTION:
        DEBUG("Disconnected (LOCAL_HOST_TERMINATED_CONNECTION)\n\r");
        break;
    case Gap::CONN_INTERVAL_UNACCEPTABLE:
        DEBUG("Disconnected (CONN_INTERVAL_UNACCEPTABLE)\n\r");
        break;
    }

    DEBUG("Restarting the advertising process\n\r");
    m_ble.startAdvertising();
}

/**
 * This callback is used whenever the host writes data to one of our GATT characteristics.
 */
void dataWrittenCallback(const GattCharacteristicWriteCBParams *params)
{
    // Ensure that initialization is finished and the host has written to the TX characteristic.
    if ((m_uart_service_ptr != NULL) && (params->charHandle == m_uart_service_ptr->getTXCharacteristicHandle())) {
        uint8_t  buf[MAX_REPLY_LEN];
        uint32_t len = 0;
        if (1 == params->len) {
            switch (params->data[0]) {
            case '0':
                m_cmd_led = m_cmd_led ^ 1;
                len = snprintf((char*) buf, MAX_REPLY_LEN, "OK... LED ON");
                break;
            case '1':
                m_cmd_led = m_cmd_led ^ 1;
                len = snprintf((char*) buf, MAX_REPLY_LEN, "OK... LED OFF");
                break;
            default:
                len = snprintf((char*) buf, MAX_REPLY_LEN, "ERROR");
                break;
            }
        }
        else
        {
            len = snprintf((char*) buf, MAX_REPLY_LEN, "ERROR");
        }
        m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
        DEBUG("%d bytes received from host\n\r", params->len);
    }
}

/**
 * This callback is used whenever a write to a GATT characteristic causes data to be sent to the host.
 */
void dataSentCallback(unsigned count)
{
    // NOTE: The count always seems to be 1 regardless of data.
    DEBUG("%d bytes sent to host\n\r", count);
}


/**
 * This callback is scheduled to be called periodically via a low-priority interrupt.
 */
void periodicCallback(void)
{
    uint8_t  buf[MAX_REPLY_LEN];
    uint32_t len = 0;
    
    if(i == 1) {
        #ifdef Color
        if (m_ble.getGapState().connected) {
            //Read color Portion from the IC
            i2c.write(BH1745_addr_w, &BH1745_Addr_color_ReadData, 1, RepStart);
            i2c.read(BH1745_addr_r, &BH1745_Content_ReadData[0], 6, NoRepStart);
            
            //separate all data read into colors
            BH1745_Red = (BH1745_Content_ReadData[1]<<8) | (BH1745_Content_ReadData[0]);
            BH1745_Green = (BH1745_Content_ReadData[3]<<8) | (BH1745_Content_ReadData[2]);
            BH1745_Blue = (BH1745_Content_ReadData[5]<<8) | (BH1745_Content_ReadData[4]);
        
            
            //transmit data
            len = snprintf((char*) buf, MAX_REPLY_LEN, "Color Sensor:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Red= %d ADC", BH1745_Red);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);       
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Green= %d ADC", BH1745_Green);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Blue= %d ADC", BH1745_Blue);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);   
                         
        }
        #endif
        i++;
    }
    else if(i == 2){
        #ifdef AnalogTemp
        if (m_ble.getGapState().connected) {
            BDE0600_Temp_value = BDE0600_Temp.read_u16();
            BDE0600_output = (float)BDE0600_Temp_value * 0.00283; //(value * (2.9V/1024))
            BDE0600_output = (BDE0600_output-1.753)/(-0.01068) + 30;
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "Temp Sensor:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Temp= %.2f C", BDE0600_output);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
        }
        #endif
        i++;
    }
    else if(i == 3){
        #ifdef AnalogUV
        if (m_ble.getGapState().connected) {
            ML8511_UV_value = ML8511_UV.read_u16();
            ML8511_output = (float)ML8511_UV_value * 0.0029; //(value * (2.9V/1024))   //Note to self: when playing with this, a negative value is seen... Honestly, I think this has to do with my ADC converstion...
            ML8511_output = (ML8511_output-2.2)/(0.129) + 10;                           // Added +5 to the offset so when inside (aka, no UV, readings show 0)... this is the wrong approach... and the readings don't make sense... Fix this.
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "UV Sensor:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  UV= %.1f mW/cm2", ML8511_output);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
        }
        #endif
        i++;
    }
    else if(i == 4){
        #ifdef HallSensor
        if (m_ble.getGapState().connected) {
            Hall_Return0 = Hall_GPIO0;
            Hall_Return1 = Hall_GPIO1;
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "Hall Sensor:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  H0 = %d, H1 = %d", Hall_Return0, Hall_Return1);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
        }
        #endif
        i++;
    }
    else if(i == 5){
        #ifdef RPR0521       //als digital
        if (m_ble.getGapState().connected) {
            
            i2c.write(RPR0521_addr_w, &RPR0521_Addr_ReadData, 1, RepStart);
            i2c.read(RPR0521_addr_r, &RPR0521_Content_ReadData[0], 6, NoRepStart);
            
            RPR0521_PS_RAWOUT = (RPR0521_Content_ReadData[1]<<8) | (RPR0521_Content_ReadData[0]);
            RPR0521_ALS_D0_RAWOUT = (RPR0521_Content_ReadData[3]<<8) | (RPR0521_Content_ReadData[2]);
            RPR0521_ALS_D1_RAWOUT = (RPR0521_Content_ReadData[5]<<8) | (RPR0521_Content_ReadData[4]);
            RPR0521_ALS_DataRatio = (float)RPR0521_ALS_D1_RAWOUT / (float)RPR0521_ALS_D0_RAWOUT;
             
            if(RPR0521_ALS_DataRatio < 0.595){
                RPR0521_ALS_OUT = (1.682*(float)RPR0521_ALS_D0_RAWOUT - 1.877*(float)RPR0521_ALS_D1_RAWOUT);
            }
            else if(RPR0521_ALS_DataRatio < 1.015){
                RPR0521_ALS_OUT = (0.644*(float)RPR0521_ALS_D0_RAWOUT - 0.132*(float)RPR0521_ALS_D1_RAWOUT);
            }
            else if(RPR0521_ALS_DataRatio < 1.352){
                RPR0521_ALS_OUT = (0.756*(float)RPR0521_ALS_D0_RAWOUT - 0.243*(float)RPR0521_ALS_D1_RAWOUT);
            }
            else if(RPR0521_ALS_DataRatio < 3.053){
                RPR0521_ALS_OUT = (0.766*(float)RPR0521_ALS_D0_RAWOUT - 0.25*(float)RPR0521_ALS_D1_RAWOUT);
            }
            else{
                RPR0521_ALS_OUT = 0;
            }
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "ALS/PROX:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  ALS= %0.2f lx", RPR0521_ALS_OUT);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  PS= %u ADC", RPR0521_PS_RAWOUT);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);        
        }
        #endif
        i++;
    }
    else if(i == 6){
        #ifdef KMX62
        if (m_ble.getGapState().connected) {
            //Read Accel Portion from the IC
            i2c.write(KMX62_addr_w, &KMX62_Addr_Accel_ReadData, 1, RepStart);
            i2c.read(KMX62_addr_r, &KMX62_Content_Accel_ReadData[0], 6, NoRepStart);

            //Note: The highbyte and low byte return a 14bit value, dropping the two LSB in the Low byte.
            //      However, because we need the signed value, we will adjust the value when converting to "g"
            MEMS_Accel_Xout = (KMX62_Content_Accel_ReadData[1]<<8) | (KMX62_Content_Accel_ReadData[0]);
            MEMS_Accel_Yout = (KMX62_Content_Accel_ReadData[3]<<8) | (KMX62_Content_Accel_ReadData[2]);
            MEMS_Accel_Zout = (KMX62_Content_Accel_ReadData[5]<<8) | (KMX62_Content_Accel_ReadData[4]);
              
            //Note: Conversion to G is as follows:
            //      Axis_ValueInG = MEMS_Accel_axis / 1024
            //      However, since we did not remove the LSB previously, we need to divide by 4 again
            //      Thus, we will divide the output by 4096 (1024*4) to convert and cancel out the LSB
            MEMS_Accel_Conv_Xout = ((float)MEMS_Accel_Xout/4096/2);
            MEMS_Accel_Conv_Yout = ((float)MEMS_Accel_Yout/4096/2);
            MEMS_Accel_Conv_Zout = ((float)MEMS_Accel_Zout/4096/2);

            //Read MAg portion from the IC
            i2c.write(KMX62_addr_w, &KMX62_Addr_Mag_ReadData, 1, RepStart);
            i2c.read(KMX62_addr_r, &KMX62_Content_Mag_ReadData[0], 6, NoRepStart);

            //Note: The highbyte and low byte return a 14bit value, dropping the two LSB in the Low byte.
            //      However, because we need the signed value, we will adjust the value when converting to "g"
            MEMS_Mag_Xout = (KMX62_Content_Mag_ReadData[1]<<8) | (KMX62_Content_Mag_ReadData[0]);
            MEMS_Mag_Yout = (KMX62_Content_Mag_ReadData[3]<<8) | (KMX62_Content_Mag_ReadData[2]);
            MEMS_Mag_Zout = (KMX62_Content_Mag_ReadData[5]<<8) | (KMX62_Content_Mag_ReadData[4]);
            
            //Note: Conversion to G is as follows:
            //      Axis_ValueInG = MEMS_Accel_axis / 1024
            //      However, since we did not remove the LSB previously, we need to divide by 4 again
            //      Thus, we will divide the output by 4095 (1024*4) to convert and cancel out the LSB
            MEMS_Mag_Conv_Xout = (float)MEMS_Mag_Xout/4096*0.146;
            MEMS_Mag_Conv_Yout = (float)MEMS_Mag_Yout/4096*0.146;
            MEMS_Mag_Conv_Zout = (float)MEMS_Mag_Zout/4096*0.146; 

            // transmit data
            

            len = snprintf((char*) buf, MAX_REPLY_LEN, "KMX61SensorData:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);

            len = snprintf((char*) buf, MAX_REPLY_LEN, "  AccX= %0.2f g", MEMS_Accel_Conv_Xout);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  AccY= %0.2f g", MEMS_Accel_Conv_Yout);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  AccZ= %0.2f g", MEMS_Accel_Conv_Zout);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  MagX= %0.2f uT", MEMS_Mag_Conv_Xout);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  MagY= %0.2f uT", MEMS_Mag_Conv_Yout);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  MagZ= %0.2f uT", MEMS_Mag_Conv_Zout);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
        }
        #endif
        i++;
    }
    else if(i==7){
        #ifdef KX122
        if (m_ble.getGapState().connected) {
            //Read KX122 Portion from the IC
            i2c.write(KX122_addr_w, &KX122_Addr_Accel_ReadData, 1, RepStart);
            i2c.read(KX122_addr_r, &KX122_Content_ReadData[0], 6, NoRepStart);
            
                
            //reconfigure the data (taken from arduino code)
            KX122_Accel_X_RawOUT = (KX122_Content_ReadData[1]<<8) | (KX122_Content_ReadData[0]);
            KX122_Accel_Y_RawOUT = (KX122_Content_ReadData[3]<<8) | (KX122_Content_ReadData[2]);
            KX122_Accel_Z_RawOUT = (KX122_Content_ReadData[5]<<8) | (KX122_Content_ReadData[4]);       

            //apply needed changes (taken from arduino code)
            KX122_Accel_X = (float)KX122_Accel_X_RawOUT / 16384;
            KX122_Accel_Y = (float)KX122_Accel_Y_RawOUT / 16384;
            KX122_Accel_Z = (float)KX122_Accel_Z_RawOUT / 16384;
            
            
            
            //transmit the data
            len = snprintf((char*) buf, MAX_REPLY_LEN, "KX122 Sensor:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  ACCX= %0.2f g", KX122_Accel_X);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  ACCY= %0.2f g", KX122_Accel_Y);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  ACCZ= %0.2f g", KX122_Accel_Z);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
        }   
        #endif
        i++;
    }
    else if (i == 8){
        #ifdef Pressure
        if (m_ble.getGapState().connected) {
            //Read color Portion from the IC
            i2c.write(Press_addr_w, &Press_Addr_ReadData, 1, RepStart);
            i2c.read(Press_addr_r, &Press_Content_ReadData[0], 6, NoRepStart);
            
            BM1383_Temp_Out = (Press_Content_ReadData[0]<<8) | (Press_Content_ReadData[1]);
            BM1383_Temp_Conv_Out = (float)BM1383_Temp_Out/32;
            
            BM1383_Var  = (Press_Content_ReadData[2]<<3) | (Press_Content_ReadData[3] >> 5);
            BM1383_Deci = ((Press_Content_ReadData[3] & 0x1f) << 6 | ((Press_Content_ReadData[4] >> 2)));
            BM1383_Deci = (float)BM1383_Deci* 0.00048828125;  //0.00048828125 = 2^-11
            BM1383_Pres_Conv_Out = (BM1383_Var + BM1383_Deci);   //question pending here...
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "Pressure Sensor:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Temp= %0.2f C", BM1383_Temp_Conv_Out);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Pres= %0.2f hPa", BM1383_Pres_Conv_Out);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
        }        
        #endif  
        i++;
    }
    else if(i == 9){
        #ifdef KXG03
        if (m_ble.getGapState().connected) {
        i2c.write(KXG03_addr_w, &KXG03_Addr_ReadData, 1, RepStart);
        i2c.read(KXG03_addr_r, &KXG03_Content_ReadData[0], 6, NoRepStart);
                        
        if (t == 1){    
            int j = 11;
            while(--j) 
            {
                //Read KXG03 Gyro Portion from the IC
                i2c.write(KXG03_addr_w, &KXG03_Addr_ReadData, 1, RepStart);
                i2c.read(KXG03_addr_r, &KXG03_Content_ReadData[0], 6, NoRepStart);
      
                //Format Data
                KXG03_Gyro_X_RawOUT = (KXG03_Content_ReadData[1]<<8) | (KXG03_Content_ReadData[0]);
                KXG03_Gyro_Y_RawOUT = (KXG03_Content_ReadData[3]<<8) | (KXG03_Content_ReadData[2]);
                KXG03_Gyro_Z_RawOUT = (KXG03_Content_ReadData[5]<<8) | (KXG03_Content_ReadData[4]);
                aveX = KXG03_Gyro_X_RawOUT;
                aveY = KXG03_Gyro_Y_RawOUT;
                aveZ = KXG03_Gyro_Z_RawOUT;
                aveX2 = aveX2 + aveX;
                aveY2 = aveY2 + aveY;
                aveZ2 = aveZ2 + aveZ;  
             } 
            aveX3 = aveX2 / 10;
            aveY3 = aveY2 / 10;
            aveZ3 = aveZ2 / 10; 
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "Gyro Sensor:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);             

            len = snprintf((char*) buf, MAX_REPLY_LEN, "Calibration OK");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);            
           
            //len = snprintf((char*) buf, MAX_REPLY_LEN, "  aveX2= %d", aveX2);
            //m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            //wait_ms(20);    
            
            //len = snprintf((char*) buf, MAX_REPLY_LEN, "  aveX3= %d", aveX3);
            //m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
                         
            
            //Read KXG03 Gyro Portion from the IC
            i2c.write(KXG03_addr_w, &KXG03_Addr_ReadData, 1, RepStart);
            i2c.read(KXG03_addr_r, &KXG03_Content_ReadData[0], 6, NoRepStart);                     
                   
            //reconfigure the data (taken from arduino code)
            KXG03_Gyro_X_RawOUT = (KXG03_Content_ReadData[1]<<8) | (KXG03_Content_ReadData[0]);
            KXG03_Gyro_Y_RawOUT = (KXG03_Content_ReadData[3]<<8) | (KXG03_Content_ReadData[2]);
            KXG03_Gyro_Z_RawOUT = (KXG03_Content_ReadData[5]<<8) | (KXG03_Content_ReadData[4]);    
            
            KXG03_Gyro_X_RawOUT2 = KXG03_Gyro_X_RawOUT - aveX3;
            KXG03_Gyro_Y_RawOUT2 = KXG03_Gyro_Y_RawOUT - aveY3;
            KXG03_Gyro_Z_RawOUT2 = KXG03_Gyro_Z_RawOUT - aveZ3;
            
            /*
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Y= %d", KXG03_Gyro_Y_RawOUT);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  aveY3= %d", aveY3);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);               
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Y= %d", KXG03_Gyro_Y_RawOUT2);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 
            */                           
            
            //Scale Data
            KXG03_Gyro_X = (float)KXG03_Gyro_X_RawOUT2 * 0.007813 + 0.000004;
            KXG03_Gyro_Y = (float)KXG03_Gyro_Y_RawOUT2 * 0.007813 + 0.000004;
            KXG03_Gyro_Z = (float)KXG03_Gyro_Z_RawOUT2 * 0.007813 + 0.000004;                                             

            len = snprintf((char*) buf, MAX_REPLY_LEN, "  X= %0.2fdeg/s", KXG03_Gyro_X);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);     
                
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Y= %0.2fdeg/s", KXG03_Gyro_Y);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);            

            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Z= %0.2fdeg/s", KXG03_Gyro_Z);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "            ");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);                           
            
            t = 0;
            }
        
        else { 
            //Read KXG03 Gyro Portion from the IC
            i2c.write(KXG03_addr_w, &KXG03_Addr_ReadData, 1, RepStart);
            i2c.read(KXG03_addr_r, &KXG03_Content_ReadData[0], 6, NoRepStart);                     
                   
            //reconfigure the data (taken from arduino code)
            KXG03_Gyro_X_RawOUT = (KXG03_Content_ReadData[1]<<8) | (KXG03_Content_ReadData[0]);
            KXG03_Gyro_Y_RawOUT = (KXG03_Content_ReadData[3]<<8) | (KXG03_Content_ReadData[2]);
            KXG03_Gyro_Z_RawOUT = (KXG03_Content_ReadData[5]<<8) | (KXG03_Content_ReadData[4]);
            
            KXG03_Gyro_X_RawOUT2 = KXG03_Gyro_X_RawOUT - aveX3;
            KXG03_Gyro_Y_RawOUT2 = KXG03_Gyro_Y_RawOUT - aveY3;
            KXG03_Gyro_Z_RawOUT2 = KXG03_Gyro_Z_RawOUT - aveZ3;              
            
            //Scale Data
            KXG03_Gyro_X = (float)KXG03_Gyro_X_RawOUT2 * 0.007813 + 0.000004;
            KXG03_Gyro_Y = (float)KXG03_Gyro_Y_RawOUT2 * 0.007813 + 0.000004;
            KXG03_Gyro_Z = (float)KXG03_Gyro_Z_RawOUT2 * 0.007813 + 0.000004;                                   
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "Gyro Sensor:");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20); 

            len = snprintf((char*) buf, MAX_REPLY_LEN, "  X= %0.2fdeg/s", KXG03_Gyro_X);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);     
                
            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Y= %0.2fdeg/s", KXG03_Gyro_Y);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);            

            len = snprintf((char*) buf, MAX_REPLY_LEN, "  Z= %0.2fdeg/s", KXG03_Gyro_Z);
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            
            len = snprintf((char*) buf, MAX_REPLY_LEN, "            ");
            m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
            wait_ms(20);
            }
        }
        #endif
        i=1;
    }
}

void error(ble_error_t err, uint32_t line)
{
    m_error_led = 1;
    DEBUG("Error %d on line number %d\n\r", err, line);
}

void PBTrigger()
{
    uint8_t  buf[MAX_REPLY_LEN];
    uint32_t len = 0;
    
    m_cmd_led = !m_cmd_led;
    
    if (m_ble.getGapState().connected) {
        len = snprintf((char*) buf, MAX_REPLY_LEN, "Button Pressed!");
        m_ble.updateCharacteristicValue(m_uart_service_ptr->getRXCharacteristicHandle(), buf, len);
    }
}

int main(void)
{
    ble_error_t err;
    Ticker      ticker;

    m_serial_port.baud(UART_BAUD_RATE);

    DEBUG("Initialising...\n\r");

    m_cmd_led      = 0;
    m_error_led    = 0;

    ticker.attach(periodicCallback, SENSOR_READ_INTERVAL_S);

    sw4Press.fall(&PBTrigger);

    #ifdef RPR0521
    // 1. Mode Control (0x41), write (0xC6): ALS EN, PS EN, 100ms measurement for ALS and PS, PS_PULSE=1
    // 2. ALS_PS_CONTROL (0x42), write (0x03): LED Current = 200mA
    // 3. PERSIST (0x43), write (0x20): PS Gain x4  
    i2c.write(RPR0521_addr_w, &RPR0521_ModeControl[0], 2, false);
    i2c.write(RPR0521_addr_w, &RPR0521_ALSPSControl[0], 2, false);
    i2c.write(RPR0521_addr_w, &RPR0521_Persist[0], 2, false);
    #endif

    #ifdef KMX62
    // 1. CNTL2 (0x3A), write (0x5F): 4g, Max RES, EN temp mag and accel
    i2c.write(KMX62_addr_w, &KMX62_CNTL2[0], 2, false);
    #endif

    #ifdef Color
    // 1. CNTL2 (0x3A), write (0x5F): 4g, Max RES, EN temp mag and accel
    i2c.write(BH1745_addr_w, &BH1745_persistence[0], 2, false);
    i2c.write(BH1745_addr_w, &BH1745_mode1[0], 2, false);
    i2c.write(BH1745_addr_w, &BH1745_mode2[0], 2, false);
    i2c.write(BH1745_addr_w, &BH1745_mode3[0], 2, false);
    #endif

    #ifdef KX122
    i2c.write(KX122_addr_w, &KX122_Accel_CNTL1[0], 2, false);
    i2c.write(KX122_addr_w, &KX122_Accel_ODCNTL[0], 2, false);
    i2c.write(KX122_addr_w, &KX122_Accel_CNTL3[0], 2, false);
    i2c.write(KX122_addr_w, &KX122_Accel_TILT_TIMER[0], 2, false);
    i2c.write(KX122_addr_w, &KX122_Accel_CNTL2[0], 2, false);
    #endif
    
    #ifdef Pressure
    i2c.write(Press_addr_w, &PWR_DOWN[0], 2, false);
    i2c.write(Press_addr_w, &SLEEP[0], 2, false);
    i2c.write(Press_addr_w, &Mode_Control[0], 2, false);
    #endif
    
    #ifdef KXG03
    i2c.write(KXG03_addr_w, &KXG03_STBY_REG[0], 2, false);        
    #endif    

    //Start BTLE Initialization Section
    m_ble.init();
    m_ble.onDisconnection(disconnectionCallback);
    m_ble.onDataWritten(dataWrittenCallback);
    m_ble.onDataSent(dataSentCallback);

    // Set the TX power in dBm units.
    // Possible values (in decreasing order): 4, 0, -4, -8, -12, -16, -20.
    err = m_ble.setTxPower(4);
    if (BLE_ERROR_NONE != err) {
        error(err, __LINE__);
    }

    // Setup advertising (GAP stuff).
    err = m_ble.setDeviceName(DEVICE_NAME);
    if (BLE_ERROR_NONE != err) {
        error(err, __LINE__);
    }

    err = m_ble.accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED);
    if (BLE_ERROR_NONE != err) {
        error(err, __LINE__);
    }

    m_ble.setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);

    err = m_ble.accumulateAdvertisingPayload(GapAdvertisingData::SHORTENED_LOCAL_NAME,
                                                (const uint8_t *)SHORT_NAME,
                                                (sizeof(SHORT_NAME) - 1));
    if (BLE_ERROR_NONE != err) {
        error(err, __LINE__);
    }

    err = m_ble.accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_128BIT_SERVICE_IDS,
                                                (const uint8_t *)UARTServiceUUID_reversed,
                                                sizeof(UARTServiceUUID_reversed));
    if (BLE_ERROR_NONE != err) {
        error(err, __LINE__);
    }

    m_ble.setAdvertisingInterval(Gap::MSEC_TO_ADVERTISEMENT_DURATION_UNITS(ADV_INTERVAL_MS));
    m_ble.startAdvertising();

    // Create a UARTService object (GATT stuff).
    UARTService uartService(m_ble);
    m_uart_service_ptr = &uartService;

    while (true) {
        m_ble.waitForEvent();
    }
}